三角函数二轮复习建议三角函数内容主要有三块;一是三角函数的化简与求值;二是三角函数的图象和性质;三是解三角形.近四年江苏高考中基本上是一至两个小题、一个大题,大都是容易题和中等题,是必须要得分的内容.特别是近两年,三角函数的小题出现在第 9 题至第 13 题这一学生拿分的关键段,更应引起我们足够的重视!2008-2011 年江苏高考数学三角函数考查情况:年份小题大题2008第 1 题 性质;5 分15 两角和差(定义背景); 14 分2009第 4 题 图象、性质;5 分15 两角和差、同角求值(向量背景); 14 分2010第 10 题 图象、同角求值;5 分第 13 题 解三角形 ;5 分17 应用题:解三角形、两角和差、基本不等式; 14 分2011第 7 题 两角和差、求值;5 分第 9 题 图象、性质;5 分15 解三角形、两角和差; 14 分基本题型一:三角函数的定义、图象和性质例1.如图,O 为坐标原点,点 A,B,C 均在⊙O 上,点 A,点 B 在第二象限,点 C(1,0).(1)设∠COA=θ,求 sin2θ 的值;(2)若△AOB 为等边三角形,求点 B 的坐标.说明:三角函数定义的运用在 2008 年高考题中出现在三角函数解答题,三角函数的定义主要是由角终边上的点坐标得到三角函数值,再进行三角化简和求值.基本策略:三角函数的定义建立了角的终边上点的坐标与三角函数之间的关系.从而实现两者相互转化。利用三角函数定义可以将角终边上的点坐标转化为相关角的三角函数,再进行三角化简和求值.解题时要注意 α 角的始边必须与 x 轴正半轴重合,且角的终边与单位圆相交所得点的坐标才为(cosα,sinα).例 2.(1) [2011·江苏卷] 函数 f(x)=Asin(ωx+φ)(A,ω,φ 为常数,A>0,ω>0)的部分图象如图所示,则 f(0)的值是________. (2) [2010·江苏卷] 定义在区间上的函数 y=6cosx 的图象与 y=5tanx 的图象的交点为 P,过点 P 作 PP1⊥x 轴于点 P1,直线 PP1与 y=sinx 的图象交于点 P2,则线段 P1P2的长为______.用心 爱心 专心1 例2(1)图 例 2(2)图说明:这两小题都为江苏高考题,利用图像考查性质以及求值,已经连续考查三年,需重视。例 3.(1)若函数 f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则 ω=________.(2)设函数 f(x)=cosωx(ω>0),将 y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则 ω 的最小值等于________...