电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

江苏省沭阳银河学校2013-2014学年高中数学 1.4《算法案例(1)》教案 苏教版必修3

江苏省沭阳银河学校2013-2014学年高中数学 1.4《算法案例(1)》教案 苏教版必修3_第1页
1/4
江苏省沭阳银河学校2013-2014学年高中数学 1.4《算法案例(1)》教案 苏教版必修3_第2页
2/4
江苏省沭阳银河学校2013-2014学年高中数学 1.4《算法案例(1)》教案 苏教版必修3_第3页
3/4
1.4 算法案例(1)教学目标:1. 理解不定方程的算法中蕴含的数学原理,并能根据这些原理进行2. 理解不定方程的算法的方法与步骤.3. 能根据算法语句与伪代码语句的知识设计完整的流程图并写出伪代码语句算法程序.4. 使学生初步掌握不定方程的算法设计和列举法的基本思想.教学重点:解不定方程的基本思想及其流程图的设计.教学难点:解不定方程的流程图设计.教学方法:1.通过讲解中国古代的一个有趣的故事的方法引入新知识,可以使学生容易接受,易于激发学生的求知欲.2.教学中利用探索性教学法,可以加深学生对不定方程的算法的理解,有利于培养学生的理性思维和实践能力.3.通过本节课的学习,使学生进一步体会观察、比较、归纳、分析等一般科学方法的运用.教学过程:一、问题情境情境:韩信是秦末汉初的著名军事家.据说有一次汉高祖刘邦在卫士的簇拥下来到练兵场,刘邦问韩信有什么方法,不要逐个报数,就能知道场上的士兵的人数. 韩信先令士兵排成 3 列纵队,结果有 2 个人多余;接着立即下令将队形改为 5 列纵队,这一改,又多出 3 人;随后他又下令改为 7 列纵队,这次又剩下 2 人无法成整行. 在场的人都哈哈大笑,以为韩信不能清点出准确的人数,不料笑声刚落,韩信高声报告共有士兵 2333 人.众人听了一愣,不知道韩信用什么方法这么快就能得出正确的结果的.同学们,你知道吗?二、学生活动1.同学们想一想,韩信是如何得出正确的人数的?2.类似的问题最早出现在我国的《算经十书》之一的《孙子算经》中原文是:“今有物,1不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?答曰:「二十三」”3.孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之後,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理.中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位;4.该问题的完整的表述,后来经过宋朝数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”.在中国还流传着这么一首歌诀: 三人同行七十稀, 五树梅花廿一枝, 七子团圆月正半, 除百零五便得知. 它的意思是说:将某数(正整数)除以 3 所得的余数乘以 70,除以 5 所得的余数乘以 21,除以 7 所得的余数乘以 15,再将所得的三个积相加,并逐次减去 105,减到差小于 105...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

江苏省沭阳银河学校2013-2014学年高中数学 1.4《算法案例(1)》教案 苏教版必修3

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部