专题 01 空间几何体一、学习目标1.进一步认识柱、锥、台、球及其简单组合体的结构特征;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,并能识别上述的三视图所表示的立体模型;3.会用斜二测画法画出简单空间图形的直观图;4.了解空间图形的不同表示形式——平行投影与中心投影;5.记住柱、锥、台、球的表面积和体积公式,并会应用。二、知识梳理1、 柱、锥、台、球的结构特征(1)棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这 些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱'''''EDCBAABCDE 或用对角线的端点字母,如五棱柱'AD 。几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等。表示:用各顶点字母,如五棱锥'''''EDCBAP 。几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台: 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等。表示:用各顶点字母,如五棱台'''''EDCBAP 。几何特征:①上下底面是相似的平行多边形 ; ②侧面是梯形 ; ③侧棱交于原棱锥的顶点。(4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。(5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。(6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分。几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个扇环。(7)球体: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。几何特征:①球的截面是圆;②球面上任意一点到球心的距...