电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学二轮复习 专题一 第3讲 导数与函数的单调性、极值、最值问题试题VIP免费

高考数学二轮复习 专题一 第3讲 导数与函数的单调性、极值、最值问题试题_第1页
高考数学二轮复习 专题一 第3讲 导数与函数的单调性、极值、最值问题试题_第2页
高考数学二轮复习 专题一 第3讲 导数与函数的单调性、极值、最值问题试题_第3页
第3讲导数与函数的单调性、极值、最值问题一、选择题1.函数f(x)=x2-lnx的单调递减区间为()A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)解析由题意知,函数的定义域为(0,+∞),又由f′(x)=x-≤0,解得0<x≤1,所以函数f(x)的单调递减区间为(0,1].答案B2.(2015·武汉模拟)已知函数f(x)=mx2+lnx-2x在定义域内是增函数,则实数m的取值范围是()A.[-1,1]B.[-1,+∞)C.[1,+∞)D.(-∞,1]解析f′(x)=mx+-2≥0对一切x>0恒成立,∴m≥-+.令g(x)=-+,则当=1,即x=1时,函数g(x)取最大值1.故m≥1.答案C3.(2015·临沂模拟)函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是()A.[0,1)B.(-1,1)C.D.(0,1)解析f′(x)=3x2-3a=3(x2-a).当a≤0时,f′(x)>0,∴f(x)在(0,1)内单调递增,无最小值.当a>0时,f′(x)=3(x-)(x+).当x∈(-∞,-)和(,+∞)时,f(x)单调递增;当x∈(-,)时,f(x)单调递减,所以当<1,即0<a<1时,f(x)在(0,1)内有最小值.答案D4.(2015·陕西卷)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.-1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上解析A正确等价于a-b+c=0,①B正确等价于b=-2a,②C正确等价于=3,③D正确等价于4a+2b+c=8.④下面分情况验证:若A错,由②、③、④组成的方程组的解为符合题意;若B错,由①、③、④组成的方程组消元转化为关于a的方程后无实数解;若C错,由①、②、④组成方程组,经验证a无整数解;若D错,由①、②、③组成的方程组a的解为-也不是整数.综上,故选A.答案A5.(2015·潍坊模拟)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex·f(x)>ex+1的解集为()A.{x|x>0}B.{x|x<0}C.{x|x<-1,或x>1}D.{x|x<-1,或0<x<1}解析构造函数g(x)=ex·f(x)-ex,因为g′(x)=ex·f(x)+ex·f′(x)-ex=ex[f(x)+f′(x)]-ex>ex-ex=0,所以g(x)=ex·f(x)-ex为R上的增函数.又因为g(0)=e0·f(0)-e0=1,所以原不等式转化为g(x)>g(0),解得x>0.答案A二、填空题6.(2015·陕西卷)设曲线y=ex在点(0,1)处的切线与曲线y=(x>0)上点P处的切线垂直,则P的坐标为________.解析 (ex)′=e0=1,设P(x0,y0),有′|=-=-1,又 x0>0,∴x0=1,故P的坐标为(1,1).答案(1,1)7.若f(x)=x3+3ax2+3(a+2)x+1在R上单调递增,则a的取值范围是________.解析f′(x)=3x2+6ax+3(a+2).由题意知f′(x)≥0在R上恒成立,所以Δ=36a2-4×3×3(a+2)≤0,解得-1≤a≤2.答案[-1,2]8.(2015·衡水中学期末)若函数f(x)=-x2+4x-3lnx在[t,t+1]上不单调,则t的取值范围是________.解析对f(x)求导,得f′(x)=-x+4-==-.由f′(x)=0得函数f(x)的两个极值点为1,3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间[t,t+1]上就不单调,所以t<1<t+1或t<3<t+1,解得0<t<1或2<t<3.答案(0,1)∪(2,3)三、解答题9.已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.解(1)f′(x)=ex(ax+a+b)-2x-4.由已知,得f(0)=4,f′(0)=4,故b=4,a+b=8.从而a=4,b=4.(2)由(1)知,f(x)=4ex(x+1)-x2-4x,f′(x)=4ex(x+2)-2x-4=4(x+2).令f′(x)=0得,x=-ln2或x=-2.从而当x∈(-∞,-2)∪(-ln2,+∞)时,f′(x)>0;当x∈(-2,-ln2)时,f′(x)<0.故f(x)在(-∞,-2],[-ln2,+∞)上单调递增,在[-2,-ln2]上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).10.(2015·长沙模拟)已知函数f(x)=x3-ax2-3x.(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围;(2)已知函数g(x)=ln(1+x)-x+x2(k≥0),讨论函数g(x)的单调性.解(1)对f(x)求导,得f′(x)=3x2-2ax-3.由f′(x)≥0在[1,+∞)上恒成立,得a≤.记t(x)=,当x≥1时,t(x)是增函数,所以t(x)min=(1-1)=0.所以a≤0.(2)g′(x)=...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部