第 2 课时 有理数乘法的运算律及运用 1.会确定多个因数相乘时积的符号,并会用法则进行多个因数的乘积运算;(重点)2.掌握有理数乘法的运算律,能利用乘法的运算定律进行简化计算.(难点)一、情境导入上节课我们学习了有理数的乘法,下面我们做几道题.计算下列各题,并比较它们的结果:1.(-7)×8 与 8×(-7);[(-2)×(-6)]×5 与(-2)×[(-6)×5].2.(-)×(-)与(-)×(-);[×(-)]×(-4)与×[(-)×(-4)].让学生自由选择其中的一组问题进行计算,然后在组内交流,验证答案的正确性.二、合作探究探究点一:多个数相乘 计算:(1)-2×3×(-4);(2)-6×(-5)×(-7);(3)0.1×(-0.001)×(-1);(4)(-100)×(-1)×(-3)×(-0.5);(5)(-17)×(-49)×0×(-13)×37.解析:先确定结果的符号,然后再将它们的绝对值相乘即可.解:(1)原式=-6×(-4)=24;(2)原式=30×(-7)=-210;(3)原式=-0.0001×(-1)=0.0001;(4)原式=100×(-3)×(-0.5)=-300×(-0.5)=150;(5)原式=0.方法总结:①几个不等于 0 的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为 0,积就为 0.探究点二:有理数乘法的运算律【类型一】 利用运算律简化计算 计算:(1)(-+)×(-24);(2)(-7)×(-)×.解析:第(1)题,按运算顺序应先算括号内的再算括号外的,显然括号内两个分数相加,通分较麻烦,而括号外面的因数-24 与括号内每个分数的分母均有公因数,若相乘可以约去分母,使运算简便.因此,可利用乘法分配律进行简便运算.第(2)题,仔细观察,会发现第 1 个因数-7 与第 3 个因数的分母可以约分,因此可利用乘法的交换律把它们先结合运算.解:(1)(-+)×(-24)=(-)×(-24)+×(-24)=20+(-9)=11;(2)(-7)×(-)×=(-7)××(-)=(-)×(-)=.方法总结:当一道题按照常规运算顺序去运算较复杂,而利用运算律改变运算顺序却能使运算变得简单些,这时可用运算律进行简化运算.【类型二】 逆用乘法的分配律 计算:-32×+(-11)×(-)-(-21)×.解析:根据乘法分配律的逆运算可先把-提出,可得-×(32-11-21),再计算括号里面的减法,后计算乘法即可.解:原式=-×(32-11-21)=0.方法总结:如果按照先算乘法,再算加减,则运算比较繁琐,且符号容易出现问题,但如果逆用乘法的分配律,则可以使运算简便.【类型三】...