电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2024-2025学年人教版九年级数学上册教案:22.1 二次函数的图象和性质(7)(当堂训练附答案)

2024-2025学年人教版九年级数学上册教案:22.1 二次函数的图象和性质(7)(当堂训练附答案)_第1页
1/3
2024-2025学年人教版九年级数学上册教案:22.1 二次函数的图象和性质(7)(当堂训练附答案)_第2页
2/3
2024-2025学年人教版九年级数学上册教案:22.1 二次函数的图象和性质(7)(当堂训练附答案)_第3页
3/3
22.1 二次函数(7)教学目标: 1.能根据实际问题列出函数关系式、 2.使学生能根据问题的实际情况,确定函数自变量 x 的取值范围。 3.通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。重点难点:根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围,既是教学的重点又是难点。教学过程:一、复习旧知 1.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。 (1)y=6x2+12x; (2)y=-4x2+8x-102. 以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少? 二、范例 有了前面所学的知识,现在就可以应用二次函数的知识去解决第 2 页提出的两个实际问题; 例 1、要用总长为 20m 的铁栏杆,一面靠墙,围成一个矩形的花圃,怎样围法才能使围成的花圃的面积最大? 解:设矩形的宽 AB 为 xm,则矩形的长 BC 为(20-2x)m,由于 x>0,且 20-2x>O,所以 O<x<1O。 围成的花圃面积 y 与 x 的函数关系式是 y=x(20-2x) 即 y=-2x2+20x 配方得 y=-2(x-5)2+50 所以当 x=5 时,函数取得最大值,最大值 y=50。 因为 x=5 时,满足 O<x<1O,这时 20-2x=10。 所以应围成宽 5m,长 10m 的矩形,才能使围成的花圃的面积最大。 例 2.某商店将每件进价 8 元的某种商品按每件 10 元出售,一天可销出约 100 件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低 0.1 元,其销售量可增加约 10 件。将这种商品的售价降低多少时,能使销售利润最大?教学要点 (1)学生阅读第 2 页问题 2 分析, (2)请同学们完成本题的解答; (3)教师巡视、指导; (4)教师给出解答过程: 解:设每件商品降价 x 元(0≤x≤2),该商品每天的利润为 y 元。 商品每天的利润 y 与 x 的函数关系式是: y=(10-x-8)(100+1OOx) 即 y=-1OOx2+1OOx+200 配方得 y=-100(x-)2+225因为 x=时,满足 0≤x≤2。 所以当 x=时,函数取得最大值,最大值 y=225。 所以将这种商品的售价降低÷元时,能使销售利润最大。例 3。用 6m 长的铝合金型材做一个形状如图所示的矩形窗框。应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少? 先思考解决以下问题: (1)若设做成的窗框的宽为 xm,则长为多少 m? ...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2024-2025学年人教版九年级数学上册教案:22.1 二次函数的图象和性质(7)(当堂训练附答案)

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部