电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2024-2025学年人教版九年级数学上册教案:23.2 中心对称(3)(当堂训练附答案)

2024-2025学年人教版九年级数学上册教案:23.2 中心对称(3)(当堂训练附答案)_第1页
1/5
2024-2025学年人教版九年级数学上册教案:23.2 中心对称(3)(当堂训练附答案)_第2页
2/5
2024-2025学年人教版九年级数学上册教案:23.2 中心对称(3)(当堂训练附答案)_第3页
3/5
23.2 中心对称(3)第三课时 教学内容 1.中心对称图形的概念. 2.对称中心的概念及其它们的运用. 教学目标 了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用. 复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用. 重难点、关键 1.重点:中心对称图形的有关概念及其它们的运用. 2.难点与关键:区别关于中心对称的两个图形和中心对称图形. 教具、学具准备 小黑板、三角形 教学过程 一、复习引入 1.(老师口问)口答:关于中心对称的两个图形具有什么性质? (老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分. 关于中心对称的两个图形是全等图形. 2.(学生活动)作图题.(1)作出线段 AO 关于 O 点的对称图形,如图所示.AO(2)作出三角形 AOB 关于 O 点的对称图形,如图所示.BAO (2)延长 AO 使 OC=AO, 延长 BO 使 OD=BO, 连结 CD则△COD 为所求的,如图所示. 二、探索新知 从另一个角度看,上面的(1)题就是将线段 AB 绕它的中点旋转 180°,因为BACDOOA=OB,所以,就是线段 AB 绕它的中点旋转 180°后与它重合.上面的(2)题,连结 AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示. AO=OC,BO=OD,∠AOB=∠COD ∴△AOB≌△COD ∴AB=CD 也就是,ABCD 绕它的两条对角线交点 O 旋转 180°后与它本身重合. 因此,像这样,把一个图形绕着某一个点旋转 180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心. (学生活动)例 1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形. 老师点评:老师边提问学生边解答. (学生活动)例 2:请说出中心对称图形具有什么特点? 老师点评:中心对称图形具有匀称美观、平稳.例 3.求证:如图任何具有对称中心的四边形是平行四边形.BACDO 分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分. 证明:如图,O 是四边形 ABCD 的对称中心,根据中心对称性质,线段 AC、BD 必过点O,且 AO=CO,BO=DO,即四边形 ABCD 的对角线互相平分,因此,四边形 ABCD 是平行四边形. 三、巩固练习 教材 练习...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2024-2025学年人教版九年级数学上册教案:23.2 中心对称(3)(当堂训练附答案)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部