电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

新高考数学二轮复习 专题限时集训14 导数(含解析)-人教版高三数学试题VIP免费

新高考数学二轮复习 专题限时集训14 导数(含解析)-人教版高三数学试题_第1页
1/7
新高考数学二轮复习 专题限时集训14 导数(含解析)-人教版高三数学试题_第2页
2/7
新高考数学二轮复习 专题限时集训14 导数(含解析)-人教版高三数学试题_第3页
3/7
专题限时集训(十四)导数1.(2020·全国卷Ⅰ)已知函数f(x)=ex-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[解](1)当a=1时,f(x)=ex-x-2,则f′(x)=ex-1.当x<0时,f′(x)<0;当x>0时,f′(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)f′(x)=ex-a.当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)上单调递增,故f(x)至多存在1个零点,不合题意.当a>0时,由f′(x)=0可得x=lna.当x∈(-∞,lna)时,f′(x)<0;当x∈(lna,+∞)时,f′(x)>0.所以f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增.故当x=lna时,f(x)取得最小值,最小值为f(lna)=-a(1+lna).(ⅰ)若0,则f(lna)<0.由于f(-2)=e-2>0,所以f(x)在(-∞,lna)存在唯一零点.由(1)知,当x>2时,ex-x-2>0,所以当x>4且x>2ln(2a)时,f(x)=e·e-a(x+2)>eln(2a)·-a(x+2)=2a>0.故f(x)在(lna,+∞)存在唯一零点.从而f(x)在(-∞,+∞)有两个零点.综上,a的取值范围是,+∞.2.(2020·新高考全国卷Ⅰ)已知函数ƒ(x)=aex-1-lnx+lna.(1)当a=e时,求曲线y=ƒ(x)在点(1,ƒ(1))处的切线与两坐标轴围成的三角形的面积;(2)若ƒ(x)≥1,求a的取值范围.[解]f(x)的定义域为(0,+∞),f′(x)=aex-1-.(1)当a=e时,f(x)=ex-lnx+1,f(1)=e+1,f′(1)=e-1,曲线y=f(x)在点(1,f(1))处的切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.直线y=(e-1)x+2在x轴,y轴上的截距分别为,2.因此所求三角形的面积为××2=.(2)当00.所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)≥1.当a>1时,f(x)=aex-1-lnx+lna≥ex-1-lnx≥1.综上,a的取值范围是[1,+∞).3.(2018·全国卷Ⅰ)已知函数f(x)=-x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a-2.[解](1)f(x)的定义域为(0,+∞),f′(x)=--1+=-.(ⅰ)若a≤2,则f′(x)≤0,当且仅当a=2,x=1时f′(x)=0,所以f(x)在(0,+∞)单调递减.(ⅱ)若a>2,令f′(x)=0,得x=或x=.当x∈∪时,f′(x)<0;当x∈时,f′(x)>0.所以f(x)在,单调递减,在单调递增.(2)证明:由(1)知,f(x)存在两个极值点时,当且仅当a>2.由于f(x)的两个极值点x1,x2满足x2-ax+1=0,所以x1x2=1,不妨设x1<x2,则x2>1.由于=--1+a=-2+a=-2+a,所以<a-2等价于-x2+2lnx2<0.设函数g(x)=-x+2lnx,由(1)知,g(x)在(0,+∞)单调递减,又g(1)=0,从而当x∈(1,+∞)时,g(x)<0.所以-x2+2lnx2<0,即<a-2.4.(2020·全国卷Ⅱ)已知函数f(x)=sin2xsin2x.(1)讨论f(x)在区间(0,π)的单调性;(2)证明:|f(x)|≤;(3)设n∈N*,证明:sin2xsin22xsin24x…sin22nx≤.[解](1)f′(x)=cosx(sinxsin2x)+sinx(sinxsin2x)′=2sinxcosxsin2x+2sin2xcos2x=2sinxsin3x.当x∈∪时,f′(x)>0;当x∈时,f′(x)<0.所以f(x)在区间,单调递增,在区间单调递减.(2)证明:因为f(0)=f(π)=0,由(1)知,f(x)在区间[0,π]的最大值为f=,最小值为f=-.而f(x)是周期为π的周期函数,故|f(x)|≤.(3)证明:由于(sin2xsin22x…sin22nx)=|sin3xsin32x…sin32nx|=|sinx||sin2xsin32x…sin32n-1xsin2nx||sin22nx|=|sinx||f(x)f(2x)…f(2n-1x)||sin22nx|≤|f(x)f(2x)…f(2n-1x)|,所以sin2xsin22x…sin22nx≤=.1.(2020·陕西百校联盟第一次模拟)已知函数f(x)=lnx,g(x)=2-(x>0).(1)试判断f(x)与g(x)的大小关系;(2)试判断曲线y=f(x)和y=g(x)是否存在公切线?若存在,求出公切线的方程;若不存在,说明理由.[解](1)设F(x)=f(x)-g(x),则F′(x)=-(x>0).由F′(x)=0,得x=3,当0<x<3时,F′(x)<0,当x>3时,F′(x)>0,故F(x)在区间(0,3)上单调递减,在区间(3,+∞)上单调递增,所以F(x)的最小值F(3)=ln3-1>0,所以F(x)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

新高考数学二轮复习 专题限时集训14 导数(含解析)-人教版高三数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部