1.(菏泽调研)等差数列{an}的通项公式an=2n-1,数列(),其前n项和为Sn,则Sn等于()A.B.C.D.以上都不对解析:∵an=2n-1,∴==.∴Sn===.答案:B2.(济宁月考)若数列{an}的通项为an=4n-1,bn=,n∈N*,则数列{bn}的前n项和是()A.n2B.n(n+1)C.n(n+2)D.n(2n+1)解析:a1+a2+…+an=(4×1-1)+(4×2-1)+…+(4n-1)=4(1+2+…+n)-n=2n(n+1)-n=2n2+n,∴bn=2n+1,b1+b2+…+bn=(2×1+1)+(2×2+1)+…+(2n+1)=n2+2n=n(n+2).答案:C3.已知数列{an}的前n项和Sn=n2-4n+2,则|a1|+|a2|+…+|a10|=()A.66B.65C.61D.56解析:当n=1时,a1=S1=-1;当n≥2时,an=Sn-Sn-1=n2-4n+2-[(n-1)2-4(n-1)+2]=2n-5.∴a2=-1,a3=1,a4=3,…,a10=15.∴|a1|+|a2|+…+|a10|=1+1+=2+64=66.答案:A4.(北京市昌平区期末考试)在数列{}na中,111,,)2nnaaayx点(在直线上,则4a的值为()A.7B.8C.9D.16答案:B解析:因为点1,)2nnaayx(在直线上,生意12nnaa,即数列{}na是公比为2的等比数列,所以334128aaq,选B.5.(北京市东城区期末考试)已知{}na为等差数列,其前n项和为nS,若36a,312S,则公差d等于()A.1B.53C.2D.3答案:C解析:因为36a,312S,所以13133()3(6)1222aaaS,解得12a,所使用316222aadd,解得2d,选C.6.已知数列{an}是首项为a1=,公比q=的等比数列,设bn+2=3logan(n∈N*),数列{cn}满足cn=an·bn.(1)求数列{bn}的通项公式;(2)求数列{cn}的前n项和Sn.解析:(1)由题意,知an=n(n∈N*),又bn=3logan-2,故bn=3n-2(n∈N*).(2)由(1),知an=n,bn=3n-2(n∈N*),∴cn=(3n-2)×n(n∈N*).∴Sn=1×+4×2+7×3+…+(3n-5)×n-1+(3n-2)×n,于是Sn=1×2+4×3+7×4+…+(3n-5)×n+(3n-2)×n+1,两式相减,得Sn=+3-(3n-2)×n+1=-(3n+2)×n+1,∴Sn=-×n(n∈N*).