电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学大二轮复习 第1部分 专题6 解析几何 第3讲 定点、定值、存在性问题练习-人教版高三数学试题VIP免费

高考数学大二轮复习 第1部分 专题6 解析几何 第3讲 定点、定值、存在性问题练习-人教版高三数学试题_第1页
1/5
高考数学大二轮复习 第1部分 专题6 解析几何 第3讲 定点、定值、存在性问题练习-人教版高三数学试题_第2页
2/5
高考数学大二轮复习 第1部分 专题6 解析几何 第3讲 定点、定值、存在性问题练习-人教版高三数学试题_第3页
3/5
第一部分专题六第三讲定点、定值、存在性问题A组1.平面直角坐标系中,已知两点A(3,1),B(-1,3),若点C满足OC=λ1OA+λ2OB(O为原点),其中λ1,λ2∈R,且λ1+λ2=1,则点C的轨迹是(A)A.直线B.椭圆C.圆D.双曲线[解析]设C(x,y),因为OC=λ1OA+λ2OB,所以(x,y)=λ1(3,1)+λ2(-1,3),即解得又λ1+λ2=1,所以+=1,即x+2y=5,所以点C的轨迹为直线.故选A.2.过双曲线x2-=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1作切线,切点分别为M,N,则|PM|2-|PN|2的最小值为(B)A.10B.13C.16D.19[解析]由题意可知,|PM|2-|PN|2=(|PC1|2-4)-(|PC2|2-1),因此|PM|2-|PN|2=|PC1|2-|PC2|2-3=(|PC1|-|PC2|)(|PC1|+|PC2|)-3=2(|PC1|+|PC2|)-3≥2|C1C2|-3=13.故选B.3.已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,且|F1F2|=2,若P是该双曲线右支上的一点,且满足|PF1|=2|PF2|,则△PF1F2面积的最大值是(B)A.1B.C.D.2[解析] ∴|PF1|=4a,|PF2|=2a,设∠F1PF2=θ,∴cosθ==,∴S2△PF1F2=(×4a×2a×sinθ)2=16a4(1-)=-9(a2-)2≤,当且仅当a2=时,等号成立,故S△PF1F2的最大值是.故选B.4.已知双曲线M的焦点F1,F2在x轴上,直线x+3y=0是双曲线M的一条渐近线,点P在双曲线M上,且PF1·PF2=0,如果抛物线y2=16x的准线经过双曲线M的一个焦点,那么|PF1|·|PF2|=(B)A.21B.14C.7D.0[解析]设双曲线方程为-=1(a>0,b>0), 直线x+3y=0是双曲线M的一条渐近线,∴=,①又抛物线的准线为x=-4,∴c=4②又a2+b2=c2.③∴由①②③得a=3.设点P为双曲线右支上一点,∴由双曲线定义得=6④又PF1·PF2=0,∴PF1⊥PF2,∴在Rt△PF1F2中|PF1|2+|PF2|2=82⑤联立④⑤,解得|PF1|·|PF2|=14.5.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k的值为(D)A.B.C.D.[解析]设A(x1,y1),B(x2,y2),则x1>0,x2>0,∴|FA|=x1+2,|FB|=x2+2,∴x1+2=2x2+4,∴x1=2x2+2.由,得k2x2+(4k2-8)x+4k2=0,∴x1x2=4,x1+x2==-4.由,得x+x2-2=0,∴x2=1,∴x1=4,∴-4=5,∴k2=,k=.6.已知斜率为的直线l与抛物线y2=2px(p>0)交于位于x轴上方的不同两点A,B,记直线OA,OB的斜率分别为k1,k2,则k1+k2的取值范围是(2,+∞).[解析]设直线l:x=2y+t,联立抛物线方程消去x得y2=2p(2y+t)⇒y2-4py-2pt=0,设A(x1,y1),B(x2,y2),Δ=16p2+8pt>0⇒t>-2p,y1+y2=4p,y1y2=-2pt>0⇒t<0,即-2p2,即k1+k2的取值范围是(2,+∞).7.已知F1,F2分别是双曲线3x2-y2=3a2(a>0)的左、右焦点,P是抛物线y2=8ax与双曲线的一个交点,若|PF1|+|PF2|=12,则抛物线的准线方程为x=-2.[解析]将双曲线方程化为标准方程得-=1,抛物线的准线为x=-2a,联立⇒x=3a,即点P的横坐标为3a.而由⇒|PF2|=6-a,又易知F2为抛物线的焦点,∴|PF2|=3a+2a=6-a,得a=1,∴抛物线的准线方程为x=-2.8.设抛物线C:y2=4x的焦点为F,过F的直线l与抛物线交于A,B两点,M为抛物线C的准线与x轴的交点,若tan∠AMB=2,则|AB|=8.[解析]依题意作出图象如图所示,设l:x=my+1,A(x1,y1),B(x2,y2),由得,y2-4my-4=0,∴y1+y2=4m,y1y2=-4,x1x2=·=1,x1+x2=m(y1+y2)+2=4m2+2. tan∠AMB=tan(∠AMF+∠BMF),∴=2,=2,y1-y2=4m2,∴4=4m2,m2=1,∴|AB|=|AF|+|BF|=x1+1+x2+1=4m2+4=8.9.(2018·抚州一模)已知动圆C与圆x2+y2+2x=0外切,与圆x2+y2-2x-24=0内切.(1)试求动圆圆心C的轨迹方程;(2)过定点P(0,2)且斜率为k(k≠0)的直线l与(1)中轨迹交于不同的两点M,N,试判断在x轴上是否存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形?若存在,求出实数m的范围;若不存在,请说明理由.[解析](1)由x2+y2+2x=0得(x+1)2+y2=1,由x2+y2-2x-24=0得(x-1)2+y2=2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学大二轮复习 第1部分 专题6 解析几何 第3讲 定点、定值、存在性问题练习-人教版高三数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部