专题强化训练(十一)计数原理、二项式定理、概率一、选择题1.[2019·安徽五校联考二]某地环保部门召集6家企业的负责人座谈,其中甲企业有2人到会,其余5家企业各有1人到会,会上有3人发言,则发言的3人来自3家不同企业的可能情况的种数为()A.15B.30C.35D.42解析:解法一:甲企业有2人,其余5家企业各有1人,共有7人,所以从7人中任选3人共有C种情况,发言的3人来自2家企业的情况有CC种,所以发言的3人来自3家不同企业的可能情况共有C-CC=30(种),故选B.解法二:发言的3人来自3家不同企业且含甲企业的人的情况有CC=20(种);发言的3人来自3家不同企业且不含甲企业的人的情况有C=10(种).所以发言的3人来自3家不同企业的可能情况共有20+10=30(种),故选B.答案:B2.[2019·长沙四校一模]某校高三年级为了解学情和教情,在该年级6个班中选10名学生参加座谈会,要求每班至少派1名学生参加,其中高三(1)班至少派2名学生参加,则不同的选派方式有()A.72种B.60种C.50种D.56种解析:首先需满足高三(1)班选2名学生,其余班级各选1名学生,然后只需分配剩下的3个名额,这3个名额可以分到一个班,有C种分法,也可以分到两个班,其中一个班1名,一个班2名,有A种分法,还可以分到三个班,每班1名,有C种分法.因此不同的选派方式共有C+A+C=56(种).故选D.答案:D3.[2019·合肥质检二]某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E;任务B、任务C不能相邻.则不同的执行方案共有()A.36种B.44种C.48种D.54种解析:由题意知任务A,E必须相邻,且只能安排为AE,由此分三类完成,(1)当AE排第一、二位置时,用○表示其他任务,则顺序为AE○○○○,余下四项任务,先全排D,F两项任务,然后将任务B,C插入D,F两项任务形成的三个空隙中,有AA种方法.(2)当AE排第二、三位置时,顺序为○AE○○○,余下四项任务又分为两类:①B,C两项任务中一项排第一位置,剩余三项任务排在后三个位置,有AA种方法;②D,F两项任务中一项排第一位置,剩余三项任务排在后三个位置,且任务B,C不相邻,有AA种方法.(3)当AE排第三、四位置时,顺序为○○AE○○,第一、二位置必须分别排来自B,C和D,F中的一个,余下两项任务排在后两个位置,有CCAA种方法.根据分类加法计数原理知不同的执行方案共有AA+AA+AA+CCAA=44(种),故选B.答案:B4.[2019·广州调研]已知甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球,现随机从甲袋中取出1个球放入乙袋中,再从乙袋中随机取出1个球,则从乙袋中取出的球是红球的概率为()A.B.C.D.解析:设事件A:“从甲袋中取出1个红球放入乙袋中,再从乙袋中取出1个红球”,事件B:“从甲袋中取出1个黄球放入乙袋中,再从乙袋中取出1个红球”,根据题意知所求概率为P(A+B)=P(A)+P(B)=×+×=.故选B.答案:B5.[2019·合肥质检]某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5的五个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会,并规定:若第一次取出的两球号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸球,若与第一次取出的两个小球号码相同,则中奖.按照这样的规则摸奖,中奖的概率为()A.B.C.D.解析:分为两个互斥事件:记“第一次取出的两球号码连号中奖”为事件A,记“第二次取出的两球与第一次取出的未中奖的两球号码相同中奖”为事件B,则由题意得P(A)==,P(B)==,则每位顾客摸球中奖的概率为P(A)+P(B)=+=,故选C.答案:C6.[2019·石家庄质检]袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:3434323413422341422433311123422...