6.解析几何1.直线的倾斜角与斜率(1)倾斜角的范围为[0,π).(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k,即k=tanα(α≠90°);倾斜角为90°的直线没有斜率;②斜率公式:经过两点P1(x1,y1)、P2(x2,y2)的直线的斜率为k=(x1≠x2);③直线的方向向量a=(1,k);④应用:证明三点共线:kAB=kBC.[问题1](1)直线的倾斜角θ越大,斜率k就越大,这种说法正确吗?(2)直线xcosθ+y-2=0的倾斜角的范围是________.答案(1)错(2)[0,]∪[,π)2.直线的方程(1)点斜式:已知直线过点(x0,y0),其斜率为k,则直线方程为y-y0=k(x-x0),它不包括垂直于x轴的直线.(2)斜截式:已知直线在y轴上的截距为b,斜率为k,则直线方程为y=kx+b,它不包括垂直于x轴的直线.(3)两点式:已知直线经过P1(x1,y1)、P2(x2,y2)两点,则直线方程为=,它不包括垂直于坐标轴的直线.(4)截距式:已知直线在x轴和y轴上的截距为a,b,则直线方程为+=1,它不包括垂直于坐标轴的直线和过原点的直线.(5)一般式:任何直线均可写成Ax+By+C=0(A,B不同时为0)的形式.[问题2]已知直线过点P(1,5),且在两坐标轴上的截距相等,则此直线的方程为________.答案5x-y=0或x+y-6=03.点到直线的距离及两平行直线间的距离(1)点P(x0,y0)到直线Ax+By+C=0的距离为d=;(2)两平行线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离为d=.[问题3]两平行直线3x+2y-5=0与6x+4y+5=0间的距离为________.答案4.两直线的平行与垂直①l1:y=k1x+b1,l2:y=k2x+b2(两直线斜率存在,且不重合),则有l1∥l2⇔k1=k2;l2⊥l2⇔k1·k2=-1.②l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则有l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0;l1⊥l2⇔A1A2+B1B2=0.特别提醒:(1)=≠、≠、==仅是两直线平行、相交、重合的充分不必要条件;(2)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线.[问题4]设直线l1:x+my+6=0和l2:(m-2)x+3y+2m=0,当m=________时,l1∥l2;当m=________时,l1⊥l2;当________时l1与l2相交;当m=________时,l1与l2重合.答案-1m≠3且m≠-135.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0),只有当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0才表示圆心为(-,-),半径为的圆.[问题5]若方程a2x2+(a+2)y2+2ax+a=0表示圆,则a=________.答案-16.直线、圆的位置关系(1)直线与圆的位置关系直线l:Ax+By+C=0和圆C:(x-a)2+(y-b)2=r2(r>0)有相交、相离、相切.可从代数和几何两个方面来判断:①代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0⇔相交;Δ<0⇔相离;Δ=0⇔相切;②几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d,则dr⇔相离;d=r⇔相切.(2)圆与圆的位置关系已知两圆的圆心分别为O1,O2,半径分别为r1,r2,则①当|O1O2|>r1+r2时,两圆外离;②当|O1O2|=r1+r2时,两圆外切;③当|r1-r2|<|O1O2|b>0);焦点在y轴上,+=1(a>b>0)...