数值分析实验作业-gauss消去法的数值稳定性分析1/9实验3.1Gauss消去法的数值稳定性试验实验目的:观察和理解Gauss消元过程中出现小主元(即)(kkka很小)时引起的方程组解的数值不稳定性。实验内容:求解方程组bAx,其中(1)11212592.1121-130.6-291.51314.59103.015-1A,2178.4617.591b;(2)2010151526990999999999.23107102A,15019000000000.582b.实验要求:(1)计算矩阵的条件数,判断系数矩阵是良态的还是病态的。(2)用Gauss列主元消去法求得L和U及解向量421,Rxx.(3)用不选主元的Gauss消去法求得L~和U~及解向量421~,~Rxx.(4)观察小主元并分析其对计算结果的影响.程序如下:计算矩阵条件数及Gauss列主元消去法:formatlongengA1=[0.3e-1559.1431;5.291-6.130-12;11.2952;1211];b1=[59.17;46.78;1;2];n=4;k2=cond(A1)%k2为矩阵的条件数;数值分析实验作业-gauss消去法的数值稳定性分析2/9fork=1:n-1a=max(abs(A1(k:n,k)));[p,k]=find(A1==a);B=A1(k,:);c=b1(k);A1(k,:)=A1(p,:);b1(k)=b1(p);A1(p,:)=B;b1(p)=c;ifA1(k,k)~=0A1(k+1:n,k)=A1(k+1:n,k)/A1(k,k);A1(k+1:n,k+1:n)=A1(k+1:n,k+1:n)-A1(k+1:n,k)*A1(k,k+1:n);elsebreakendendL1=tril(A1,0);fori=1:nL1(i,i)=1;endL=L1U=triu(A1,0)forj=1:n-1b1(j)=b1(j)/L(j,j);b1(j+1:n)=b1(j+1:n)-b1(j)*L(j+1:n,j);endb1(n)=b1(n)/L(n,n);forj=n:-1:2b1(j)=b1(j)/U(j,j);b1(1:j-1)=b1(1:j-1)-b1(j)*U(1:j-1,j);endb1(1)=b1(1)/U(1,1);x1=b1运行结果如下:K2=68.43;14929.00202.00893.0011755.04724.00011079.26000118L801.0000231.1835.2001314.5902592.11U1x=[18.9882;3.3378;-34.747;-33.9865]数值分析实验作业-gauss消去法的数值稳定性分析3/9不选主元的Gauss消去法程序:clearformatlongengA1=[0.3e-1559.1431;5.291-6.130-12;11.2952;1211];b1=[59.17;46.78;1;2];n=4;fork=1:n-1A1(k+1:n,k)=A1(k+1:n,k)/A1(k,k);A1(k+1:n,k+1:n)=A1(k+1:n,k+1:n)-A1(k+1:n,k)*A1(k,k+1:n);endL1=tril(A1,0);fori=1:nL1(i,i)=1;endL=L1U=triu(A1,0)forj=1:n-1b1(j)=b1(j)/L(j,j);b1(j+1:n)=b1(j+1:n)-b1(j)*L(j+1:n,j);endb1(n)=b1(n)/L(n,n);forj=n:-1:2b1(j)=b1(j)/U(j,j);b1(1:j-1)=b1(1:j-1)-b1(j)*U(1:j-1,j);endb1(1)=b1(1)/U(1,1);x1=b1程序运行结果如下:10189.010333.3011168.21033.3700110637.170001~151515L5.00008160010637.171091.5210043.101314.59103.0~15151815U]0;0;0005.1;6848.23[~1x同理可得2A对应的系数矩阵条件数及Gauss列主元消去法求解结果:K2=8.994;数值分析实验作业-gauss消去法的数值稳定性分析4/91333.04.0001104.0-3.0-0015.0000112-L36667.300030.26005.155.2010710U]0.1;;0.1;0.1;10444.0[152x不选主元的Gauss消去法结果:1400.0109999.0-001104998.2-5.00013.0-0001~1212L3667.3000107495.5109987.14003.26100.1010710~121212U]000145.1;99994.0;000.1;1045.1[~52x实验4.5三次样条插值函数的收敛性问题提出:多项式插值不一定收敛的,即插值的节点多,效果不一定就好。对三次样条插值函数又如何呢?理论上证明三次样条插值函数的收敛性是比较困难的,也超过了本课程的内容。通过本实验可以验证这一理论结果.数值分析实验作业-gauss消去法的数值稳定性分析5/9实验内容:请按一定的规则分别选择等距或者非等距的插值节点,并不断增加插值节点的个数。考虑实验4.4中的函数或者选择其他感兴趣的函数,可用Matlab的函数“spline”作此函数的三次样条插值函数。实验要求:(1)随着节点个数的增加,比较被逼近函数和三次样条差值函数的误差变化情况。分析所得结果并与拉格朗日插值多项式比较。(2)三次样条插值函数的思想最早产生于工业部门。作为工业迎合用的例子,考虑如下例子:某汽车制造商根据三次样条差值函数设计车门曲线,其中一段的数据如下:kx012345678910ky0.00.791.532.192.713.033.272.893.063.193.29'ky0.80.2(3)计算实验4.4的样条插值.程序如下:formatshortx1=-1:0.5:1;y1=1./(1+25.*x1.*x1);x2=-1:0.25:1;y2=1./(1+25.*x2.*x2);x3=-1:0.1:1;y3=1./(1+25.*x3.*x3);x4=[-1,-0.82,-0.6,-0.53,-0...