十九、“牛吃草”问题【含义】“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。这类问题的特点在于要考虑草边吃边长这个因素。【数量关系】草总量=原有草量+草每天生长量×天数【解题思路和方法】解这类题的关键是求出草每天的生长量。例1:一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。问多少头牛5天可以把草吃完?解草是均匀生长的,所以,草总量=原有草量+草每天生长量×天数。求“多少头牛5天可以把草吃完”,就是说5天内的草总量要5天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:(1)求草每天的生长量20天内草生长量原有草量10头牛20天把草吃完⋯⋯⋯10天1×15×10=原有草量+10天内生长量5天1×?×5=原有草量+5天内生长量1头牛1天吃的草原有草量⋯⋯⋯10天内草生长量1头牛1天吃的草?头牛5天把草吃完20天1×10×20=原有草量+20天内生长量15头牛10天把草吃完⋯⋯⋯1头牛1天吃的草原有草量5天内草生长量(20-10)天内草的生长量为1×10×20-1×15×10=50草每天的生长量为50÷(20-10)=5原有草量=10天内总草量-10内生长量=1×15×10-5×10=1005天内草总量=原有草量+5天内生长量=100+5×5=125因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以1×10×20=原有草量+20天内生长量同理1×15×10=原有草量+10天内生长量由此可知(20-10)天内草的生长量为1×10×20-1×15×10=50因此,草每天的生长量为50÷(20-10)=5(2)求原有草量原有草量=10天内总草量-10内生长量=1×15×10-5×10=100(3)求5天内草总量5天内草总量=原有草量+5天内生长量=100+5×5=125(4)求多少头牛5天吃完草因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。因此5天吃完草需要牛的头数125÷5=25(头)答:需要25头牛5天可以把草吃完。例2:一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。如果有12个人淘水,3小时可以淘完;如果只有5人淘水,要10小时才能淘完。求17人几小时可以淘完?解这是一道变相的“牛吃草”问题。与上题不同的是,最后一问给出了人数(相当于“牛数”),求时间。设每人每小时淘水量为1,按以下步骤计算:(1)求每小时进水量因为,3小时内的总水量=1×12×3=原有水量+3小时进水量10小时内的总水量=1×5×10=原有水量+10小时进水量所以,(10-3)小时内的进水量为1×5×10-1×12×3=14因此,每小时的进水量为14÷(10-3)=2(2)求淘水前原有水量原有水量=1×12×3-3小时进水量=36-2×3=30(3)求17人几小时淘完17人每小时淘水量为17,因为每小时漏进水为2,所以实际上船中每小时减少的水量为(17-2),所以17人淘完水的时间是3小时进水量原有水量12个人3小时淘完⋯⋯⋯10小时水量1×5×10=原有水量+10小时进水量?小时水量1×17×?=原有水量+?小时进水量每人每小时淘水量为1原有水量⋯⋯⋯10小时进水量每人每小时淘水量为117人几小时可以淘完?3小时水量1×12×3=原有水量+3小时进水量5人10小时淘完⋯⋯⋯每人每小时淘水量为1原有水量?小时进水量(10-3)小时内的进水量为1×5×10-1×12×3=14每小时的进水量为14÷(10-3)=2原有水量=1×12×3-3小时进水量=36-2×3=30⋯⋯⋯30÷(17-2)=2(小时)答:17人2小时可以淘完水。二十、?鸡兔同笼问题【含义】这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可...