谈初中数学教学中探究情境的设计金李井镇豹岭小学崔友数学探究性教学,就是教师引导学生以探究的方式学习数学。这种教学方法强调从学生已有的生活经验出发,让学生充分自由表达、质疑、探究、讨论问题,从而主动地获取知识并应用知识解决问题,目的是使学生在创新能力、情感态度和价值观等方面得到发展。而教师引导学生探究的首要任务就是如何创设探究学习的情境。本文拟结合自己的教学实践谈谈初中数学教学中探究情境的设计。一、探究情境的基本特征在数学教学中,探究情境的设计应充分利用外在的物质材料,展示内在的思维过程,揭示知识的发生、发展过程。应具有促进学生智力因素和非智力因素的发展。还应使问题情境结构,数学知识结构,学生认识结构三者和谐统一,促进数学知识结构向学生认识结构的转化,既要创设与当前教学要解决的问题,又要创设与当前问题有关,并能使学生回味思考的问题。数学探究情境一般有如下特征:1、情境性:“情境”是探究教学的出发点和切入点。“情”就是将学生的兴趣、需要、态度、情感的培养纳入课堂教学。“境”是通过各种真实环境或模拟世界的创设,拉近知识与学生现实生活的距离,使学生感到知识与客观世界,现实生活密切相关。2、问题性:“问题”是探究的方向与动力,是学生学习新知的源头所在,学生要在解决问题的过程中学会学习,建构新知,老师要根据不同的学习内容,创设学生熟悉或感兴趣,与学习新知紧密相关的情境,利于学生提取信息,提出数学问题。3、启发性:作为数学情境的材料或活动,必须富有启发性,能激发学生的元认知,引发学生广泛的联想和想象。4、针对性:作为探究情境的材料或活动应针对学生的实际和教学内容的特点,为实现教学目标服务。5、趣味性:作为探究情境的材料或活动应尽量新颖有趣。对材料或活动的直接兴趣,能有效地激发学生的学习动机。二、例谈探究情境的设计1、为学习新的课题而设计的铺垫型情境:以处于学生认知结构范围内的富有启发性的常规问题或已知的数学事实为素材,创设铺垫型情境。这种情境可为学生提出问题提供有效的启发,对培养学生思维的开放性有重要作用。此种情境常用于新知识的引入。例如:在“平方根”一节中,我是这样创设情境的。“同学们已学过已知正方形的边长可以用平方来求它们的面积。反之,已知一个正方形的面积可否求它们的边长呢?比如9平方米、16平方米、3平方米,a平方米等?”前两个正方形的边长同学们会轻而易举地答出来,但在后面正方形的边长上却卡壳了,有的摇头,有的挠腮,跃跃欲试,他们想不到被一个似曾相识的简单问题难住了,很不服气。在这种难识庐山真面目的障疑情境下,我顺势点出课题,指出要识庐山真面目,就必须探索研究,掌握新内容,同学们鸦雀无声,兴趣很浓。2、为深化学生认知结构而设计的认知冲突型情境:以富有挑战性、探究性且处于学生认知结构的最近发展区的问题为素材,可创设认知冲突型教学情境,使学生处于心欲求而不得,口欲言而不能的“愤悱”状态,引起认知冲突,产生认知推敲,从而激起学生强烈的探究欲望和学习动机。例如:在学生学完三角形全等的判定之后,我就为学生们设计了这样一个探究情境。课本上举例说明了“有两边和其中一边的对角对应相等的两个三角不一定全等”,那么“有两边和其中一边的对角对应相等的两个三角形”在什么情况下全等?什么情况下不全等呢?以上这一情境,激起了学生们的探究欲望,有利于学生在自主探索中寻找答案。3、为帮助学生总结数学思想和方法而设计的思维策略型情境:以思维策略多样、解题方法典型、解题过程能体现某种完整的数学思想方法或思维方法的问题作为素材,可创设思维策略型教学情境。例如:在帮助学生们总结证明形如“a2:b2=c:d”这类几何题的一般方法时,我就事先准备了三道有代表性的题让学生先做,并要求学生做完这三道习题后总结出证明这类习题的一般思路。经过探究同学们总结出了三种思路:(1)利用切割线定理将a2:b2=c:d中的a2,用a2=mb代换转化成m:b=c:d。(2)若a、b、c、d四条线段所在的两个三角形有相似和等高的特点,可利用相似三角形面积之比等于相似比的平方和等高三角形面积之比...