福建省南平市水东学校八年级数学下册《第二章分解因式》教案人教新课标版●课时安排6课时第一课时●课题:§2.1分解因式●教学目标(一)教学知识点使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.(二)能力训练要求通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言概括能力.(三)情感与价值观要求通过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系.●教学重点:1.理解因式分解的意义.2.识别分解因式与整式乘法的关系.●教学难点:通过观察,归纳分解因式与整式乘法的关系.●教学方法:观察讨论法●教学过程Ⅰ.创设问题情境,引入新课[师]大家会计算(a+b)(a-b)吗?我们是在整式乘法中学习的.从式子(a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢?这就是我们即将学习的内容:因式分解的问题.Ⅱ.讲授新课1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流.993-99能被100整除.因为993-99=99×992-99=99×(992-1)=99×9800=99×98×100其中有一个因数为100,所以993-99能被100整除.[师]993-99还能被哪些正整数整除?(被99,98,980,990,9702等整除.)[师]从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.2.议一议你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.[师]大家可以观察a3-a与993-99这两个代数式.(a3-a=a(a2-1)=a(a-1)(a+1))3.做一做(1)计算下列各式:①(m+4)(m-4)=__________;②(y-3)2=__________;③3x(x-1)=__________;④m(a+b+c)=__________;⑤a(a+1)(a-1)=__________.(2)根据上面的算式填空:①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();④y2-6y+9=()2.⑤a3-a=()().[师]能分析一下两个题中的形式变换吗?[师]在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式(factorization).4.想一想由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?[师]下面我们一起来总结一下.如:m(a+b+c)=ma+mb+mc(1)ma+mb+mc=m(a+b+c)(2)联系:等式(1)和(2)是同一个多项式的两种不同表现形式.区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.即ma+mb+mcm(a+b+c).所以,因式分解与整式乘法是相反方向的变形.5.例题下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.Ⅲ.课堂练习Ⅳ.课时小结本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形.Ⅴ.课后作业:习题2.1Ⅵ.活动与探究已知a=2,b=3,c=5.求代数式a(a+b-c)+b(a+b-c)+c(c-a-b)的值.解:当a=2,b=3,c=5时,a(a+b-c)+b(a+b-c)+c(c-a-b)=a(a+b-c)+b(a+b-c)-c(a+b-c)=(a+b-c)(a+b-c)=(2+3-5)2=0●课后反思:第二课时●课题:§2.2.1提公因式法(一)●教学目标(一)教学知识点让学生了解多项式公因式的意义,初步会用提公因式法分解因式.(二)能力训练要求通过找公因式,培养学生的观察能力.(三)情感与价值观要求在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的习惯,同时培养学生的合作交流意识,还能使学生初步感到因式分解在简化计算中将会起到很大的作用.●教学重点:能观察出多项式的公因式,并根据分配律把公因式提出来.●教学难点:让学生识别多项式的公因式.●教学方法:独立思考——合作交流法.●教学过程Ⅰ.创设问题情境,引入新课一块场地由三个矩形组成,这些矩形的长...