12.1幂的运算教学目标1.知识与技能能用文字语言和符号语言表述同底数幂的乘法法则.2.过程与方法经历探索同底数幂乘法的法则的过程,发展学生的推理能力.3.情感、态度与价值观在小组合作交流中,培养协作精神、探究精神,增强学习信心.重、难点1.重点:同底数幂乘法运算性质的推导和应用.2.难点:同底数幂的乘法的法则的应用.教学方法采用“情境导入──探究提升”的方法,让学生从生活实际出发,认识同底数幂的运算法则.教学过程一、创设情境,故事引入情境导入:据港媒体报道:中国空军的新歼10战斗机近日试飞成功,它每秒可以飞行103米,假如它飞行106秒,可以飞行多少米?结果:103×106由103×106=?(引入课题,出示目标)引导:为了大家更好地学习本节知识,我们先来复习一下有关乘方及幂的知识.(投影出示)1.乘方以及幂的概念;2.有关底数与指数的训练103×106=(10×10×10)×(10×10×10×10×10×10)=10×10×10×10×10×10×10×10×10=109引例:请同学们完成计算并探索规律.(1)23×24=(2×2×2)×(2×2×2×2)=2();(2)53×54=_____________=5();(3)(-3)7×(-3)6=(-3)();(4)a3·a4=________________a().【答案】(1)7(2)(5×5×5)×(5×5×5×5)7(3)13(4)(a×a×a)×(a×a×a×a)7问题:①这几道题目有什么共同特点?②请同学们看一看自己的计算结果,想一想,这些结果有什么规律?学生活动:独立完成,并在黑板上演算.特点:这三个式子都是底数相同的幂相乘.相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.学生活动:观察并思考,猜想am·an=?(当m、n都是正整数),并尝试验证.师生总结:借助老师的推导过程,验证am·an==am+n这样就探究出了同底数幂的乘法法则.am·an=am+n(m、n都是正整数),即:同底数幂相乘,底数不变,指数相加注:运算形式必须是-----同底数、乘法学生活动:探讨三个以及三个以上的同底数幂的乘法.二、范例学习学生活动:学生独立完成例1例2,同桌互批.例1:计算:(1)103×104(2)a·a3(3)a·a3·a5【答案】(1)103×104=103+4=107(2)a·a3=a1+3=a4(3)a·a3·a5=a1+3+5=a9例2:世界海洋的面积约为3.6亿平方千米,约等于多少平方米?解:1亿=100000000=1081千方千米=1千米×1千米=103米×103米=106平方米3.6亿平方千米=3.6×108平方千米=3.6×108×106平方米=3.6×1014平方米所以,海洋的面积约等于3.6×1014平方米三、知识巩固计算:(1)x10·x(2)10×102×104(3)x5·x·x3(4)y4·y3·y2·y解:(1)x10·x=x10+1=x11(2)10×102×104=101+2+4=107(3)x5·x·x3=x5+1+3=x9(4)y4·y3·y2·y=y4+3+2+1=y10强调:(1)计算结果可以用幂的形式表示.如(2)10×102×104=101+2+4=107,但是如果计算较简单时也可以计算出得数.(2)注意y是y的一次方,提醒学生不要漏掉这个指数1.(3)上述例题的探究,目的是使学生理解法则,运用法则,解题时不要简化计算过程,要让学生反复叙述法则.2.今天你审案:当小法官来判断对错(1)b5·b5=2b5()(2)bb5+b5=b10()(3)x5·x5=x25()(4)y5·y5=2y10()(5)c·c3=c3()(6)m+m3=m4()【答案】(1)×(2)×(3)×(4)×(5)×(6)×四、课堂小结知识:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.即am·an=am+n(m、n都是正整数)注意:1.同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系,使用方法:乘积中,幂的底数不变,指数相加.2.应用时可以拓展,例如含有三个或三个以上的同底数幂相乘,仍成立,底数和指数,既可以取一个或几个具体数,由可取单项式或多项式.能力:特殊----一般------特殊五、布置作业课本习题