22.9平面图形的镶嵌教学目标1.了解平面图形的镶嵌的含义、掌握哪些平面图形可以镶嵌,镶嵌的理由及简单的镶嵌设计.2.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌,并能运用这几种图形进行简单的设计.3.经历探索多边形镶嵌的过程,进一步发展学生的合情推理能力,开发、培养学生创造性思维.教学重点:以三角形、四边形和正六边形的镶嵌.[来源:Zxxk.Com]教学难点:用同一种平面图形或者几种平面图形可以镶嵌的条件.[来源:学科网]教学过程:[来源:学*科*网Z*X*X*K]一、巧设情景问题,引入课题我们经常能见到各种建筑物的地板,观察地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.这种用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.这节课我们来探索平面图形的镶嵌.二、讲授新课(一)用同一种多边形镶嵌[来源:Z_xx_k.Com]做一做,回答问题:平面图形的镶嵌,需注意:各种图形拼接后要既无缝隙,又不重叠,那我们先来探索多边形镶嵌的条件,大家拿出准备好的剪刀和硬纸片分组来做一做:[来源:学科网](1)用形状、大小完全相同的三角形能否镶嵌?(2)用同一种四边形可以镶嵌吗?用硬纸板剪制若干形状、大小完全相同的四边形做实验,并与同伴交流.(3)在用三角形镶嵌的图案中,观察每个拼接点处有几个角?它们与这种三角形的三个内角有什么关系?(4)在用四边形镶嵌的图案中,观察每个拼接点处的四个角与这种四边形的四个内角有什么关系?(学生动手制作、教师强调:大家要注意:三角形、四边形的形状,可以是任意的,但裁剪出的每种图形一定是全等形)(学生分组拼接、讨论,寻找规律,教师巡视指导)1.用形状、大小完全相同的三角形可以镶嵌因为三角形的内角和为180°,所以,用6个这样的三角形就可以组合起来镶嵌成一个平面.从用三角形镶嵌的图案中,观察到:每个拼接点处有6个角,这6个角分别是这种三角形的内角(其中有三组分别相等),它们可以组成两个三角形的内角,它们的和为360°.[来源:Z.xx.k.Com]2.用同一种四边形也可以镶嵌在用四边形镶嵌的图案中,观察到:每个拼接点处的四个角恰好是一个四边形的四个内角,四边形的内角和为360°,所以它们的和为360°.3.从拼接活动中,我们知道了:要用几个形状、大小完全相同的图形不留空隙、不重叠地镶嵌一个平面,需使得拼接点处的各角之和为360°.[来源:学科网ZXXK]通过探索活动,我们得知:用形状、大小完全相同的四边形或三角形可以镶嵌一个平面,那么其他的多边形能否镶嵌?下面大家来想一想,议一议:(1)正六边形能否镶嵌?简述你的理由.[来源:学科网ZXXK](2)正五边形能否镶嵌?简述你的理由.(3)还能找到能镶嵌的其他正多边形吗?(学生分析、讨论、归纳)4.小结:要用正多边形镶嵌成一个平面的关键是:周角是否是这种正多边形的一个内角的整倍数,在正多边形里,正三角形的每个内角都是60°,正四边形的每个内角都是90°,正六边形的每个内角都是120°,这三种多边形的一个内角的整倍数都是360°,而其他的正多边形的每个内角的整倍数都不是360°,所以说:在正多边形里只有正三角形、正四边形、正六边形可以镶嵌,而其他的正多边形不可镶嵌.一般三角形、四边形也可以镶嵌.虽然它们的内角未必都相等.(二)用两种正多边形镶嵌1.正三角形与正方形正方形的每个内角是90°,正三角形的每个内角是60°,对于某个拼结点处,设有x个60°角,有y个90°角,则:[来源:学科网]60x+90y=360即:2x+3y=12又x、y是正整数解得:x=3,y=2即:每个顶点处用正三角形的三个内角,正方形的两个内角进行拼接.(如下图)[来源:学科网ZXXK]2.正三角形与正六边形正三角形的每个内角是60°,正六边形的每个内角是120°,对于某个拼结点处,设有x个60°角,有y个120°角,即:60x+120y=360°即x+2y=6[来源:Z_xx_k.Com]x、y是正整数解得:即:每个顶点处用四个正三角形和一个正六边形,或者用二个正三角形和两个正六边形,如下图.(3)正三角形和正十二边形与前一样讨论,得每个顶点处用一个正三角形和两个正十二边形由以上讨论可找到镶嵌平...