11.2实数第1课时实数的有关概念1.理解无理数与实数的概念.2.知道实数与数轴上的点的一一对应关系,进一步培养数形结合的思想.3.会比较两个实数的大小.重点实数的概念.难点实数与数轴上的点一一对应的关系.一、创设情境教师多媒体课件展示、引出问题.如图,将两个边长为1的正方体分别沿对角线剪开、得到四个等腰直角三角形,即可拼成一个大正方形,容易知道,这个大正方形的面积是2,所以大正方形的边长为.通过观察教材第8页的计算你发现了什么?它是一个什么数?二、探究新知1.无理数与实数的概念用计算器计算:=________,它与上面问题中的数化成小数后的形式是否一样?既不是有限小数,也不是无限________小数,我们把它叫做无理数.在数学上已经证明,没有一个有理数的平方等于2,也就是说,不是一个有理数.2.383383338…与的数值是否类似?________,它也是一个________数.我们熟悉的圆周率π=________,它是一个________数.从上述题目中,你有什么发现?你能把数进行适当的分类吗?请在讨论交流后举手回答,不断补充完善,达成共识.最后教师予以点评讲解.(1)我们把无限不循环小数叫做无理数,例如:,π,2.383383338…等都是无理数.有理数与无理数统称为实数.(2)分类:实数也可以这样分:实数2.实数与数轴上的点一一对应按照计算器显示的结果,你能想象出在数轴上的位置吗?利用教材第9页的“试一试”,让学生在讨论、合作的基础上动手操作.在数轴上能画出表示的点,说明了一个什么问题?数轴上的任意一点必定表示一个实数;反过来,每一个实数(有理数或无理数)也都可以用数轴上的点来表示,换句话说,实数与数轴上的点一一对应.三、练习巩固1.在数1.44,-,,3-,3.14,中,无理数有()个.A.1B.2C.3D.42.与数轴上的点一一对应的数是()A.有理数B.无理数C.实数D.整数3.实数a在数轴上的位置如图:化简:|a-1|+=________.四、小结与作业小结这节课你学到了什么?有什么收获?有何疑问?与同伴交流,在学生交流发言的基础上,教师归纳总结.作业教材第11页练习第1~3题.波利亚认为,“头脑不活动起来,是很难学到什么东西的,也肯定学不到更多的东西”、“学东西最好的途径是亲自去发现它”、“学生在学习中寻求欢乐”.在本节课的教学设计中注意从学生的认知水平和亲身感受出发,创设学习情境,提高学生的积极性和学习兴趣,设计系列活动让学生经历不同的学习过程.在活动过程中让学生动手试一试,说说自己的发现并与同学交流结论,从而得出数轴上的点与实数是一一对应的关系.注意类比思考,以旧迎新.