专题阶段评估(四)立体几何【说明】本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入答题格内,第Ⅱ卷可在各题后直接作答,共150分,考试时间120分钟.第Ⅰ卷(选择题共50分)题号12345678910答案一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·江西高三上学期七校联考)已知直线a和平面α、β,α∩β=l,a⊄α,a⊄β,且a在α、β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面2.一个与球心距离为1的平面截球体所得的圆面面积为π,则球的体积为()A.B.C.D.8π3.(2013·湖南五市十校检测)如图是一个空间几何体的三视图,则该几何体的侧面积为()A.B.4C.8D.124.(2013·江西卷)一几何体的三视图如图所示,则该几何体的体积为()A.200+9πB.200+18πC.140+9πD.140+18π5.设直线m与平面α相交但不垂直,则下列说法中正确的是()A.在平面α内有且只有一条直线与直线m垂直B.过直线m有且只有一个平面与平面α垂直C.与直线m垂直的直线不可能与平面α平行D.与直线m平行的平面不可能与平面α垂直6.设m,n是两条不同的直线,α,β,γ是三个不同的平面,有以下四个命题:①⇒β∥γ②⇒m⊥β③⇒α⊥β④⇒m∥α其中正确的命题是()A.①④B.②③C.①③D.②④7.(2013·湖南卷)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于()A.B.1C.D.8.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.有无数条B.有2条C.有1条D.不存在9.如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC10.(2013·东北三校模拟)点A、B、C、D在同一个球的球面上,AB=BC=,AC=2,若四面体ABCD体积的最大值为,则这个球的表面积为()A.B.8πC.D.第Ⅱ卷(非选择题共100分)题号第Ⅰ卷第Ⅱ卷总分二161718192021得分二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.(2013·陕西卷)某几何体的三视图如图所示,则其体积为________.12.(2013·山西省诊断考试)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是边长为2的正方形,该三棱柱的侧视图的面积为________.13.已知平面α、β和直线m,给出条件:①m∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.(1)当满足条件________时,有m∥β;(2)当满足条件________时,有m⊥β.(填所选条件的序号)14.如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于点O,剪去△AOB,将剩余部分沿OC,OD折叠,使OA,OB重合,则以A,B,C,D,O为顶点的四面体的体积为________.15.(2013·山西省诊断考试)已知三棱锥P-ABC的各顶点均在一个半径为R的球面上,球心O在AB上,PO⊥平面ABC,=,则三棱锥与球的体积之比为________.三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)(2013·长春市调研)如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC中点.(1)证明:A1O⊥平面ABC;(2)若E是线段A1B上一点,且满足VE-BCC1=·VABC-A1B1C1,求A1E的长度.17.(本小题满分12分)(2013·安徽卷)如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,PA=.(1)证明:PC⊥BD;(2)若E为PA的中点,求三棱锥P-BCE的体积.18.(本小题满分12分)(2013·荆州市质量检查)如图,已知四棱锥P-ABCD的底面为直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中点.(1)求证:AM=CM;(2)若N是PC的中点,求证:DN∥平面AMC.19.(本小题满分13分)(2013·东北三校模拟)如图,三棱柱ABC-A1B1C1的侧棱AA1⊥...