线段的垂直平分线教学目标:1、知识目标:(1)掌握线段的垂直平分线的性质定理及其逆定理;(2)能运用它们证明两条线段相等或两条直线互相垂直;2、能力目标:(1)通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(2)提高综合运用知识的能力.3、情感目标:(1)通过自主学习的发展体验获取数学知识的感受;;(2)通过知识的纵横迁移感受数学的辩证特征.教学重点:线段垂直平分线定理及其逆定理教学难点:定理及逆定理的关系教学用具:直尺,微机教学方法:以学生为主体的讨论探索法教学过程:1、新课背景知识复习(1)线段垂直平分线的概念(2)问题:(投影显示)如图,CD是线段AB的垂直平分线,P为CD上任意一点,PA、PB有何关系?为什么?整个过程,由学生完成.找一名学生代表回答上述问题并投影显示学生的证明过程.2、定理的获得让学生用文字语言将上述问题表述出来.定理:线段垂直平分线上的点和这条线段两个端点的距离相等.强调说明:线段垂直平分线性质定理是证明线段相等的一条依据,在计算、作图中也有重要作用.学生根据上述学习,提出自己的问题(待定)学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.3、逆定理的获得类比角平分线逆定理获得的过程,让学生讲解下一环节所要学习研究的内容.这一过程,完全由学生自己通过小组的形式,代表到台前讲解.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.强调说明:定理与逆定理的联系与区别相同点:结构相同、证明方法相同不同点:用途不同,定理是用来证线段相等4、定理与逆定理的应用(1)讲解例1(投影例1)例1如图,△ABC中,∠C=,∠A=,AB的在垂线交AC于D,交AB于E求证:AC=3CD证明:∵DE垂直平分AB∴AD=BD∴∠1=∠A=∵∴∠2=∴CD=BD∴CD=AD∴AD=2CD即AC=3CD讲解例2(投影例2)例2:在△ABC中,AB=AC,AB的中垂直线与AC所在直线相交所得的锐角为,求底角B的大小.(学生思考、分析、讨论,教师巡视,适当参与讨论)解:(1)当AB的中垂线MN与AC相交时,如图(1),∵∠ADE=,∠AED=∴∠A=-∠AED=-=∵AB=AC∴∠B=∠C∴∠B=(2)当的中垂线与的延长线相交时,如图(2)∵∠ADE=,∠AED=∴∠BAE=-∠AED=-=∵AB=AC∴∠B=∠C∴∠B=例3(1)在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=,求∠NMB的大小(2)如果将(1)中∠A的度数改为,其余条件不变,再求∠NMB的大小(3)你发现有什么样的规律性?试证明之.(4)将(1)中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改解:(1)∵AB=AC∴∠B=∠ACB∴∠B=∵∠BNM=∴(2)如图,同(1)同理求得(3)如图,∠NMB的大小为∠A的一半5、课堂小结:(1)线段垂直平分线性质定理和逆定理(2)在应用时,易忽略直接应用,往往又重新证三角形的全等,使计算或证明复杂化.6、布置作业:思考题:已知:如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高求证:AD垂直平分EF证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC∴DE=DF∴D在线段EF的垂直平分线上在Rt△ADE和Rt△ADF中∴Rt△ADE≌Rt△ADF∴AE=AF∴A点也在线段EF的垂直平分线上∵两点确定一条直线∴直线AD就是线段EF的垂直平分线