5.应用二元一次方程组——里程碑上的数一、教学任务分析本节内容是在学生学习了二元一次方程组的解法和部分二元一次方程组的应用后,紧接着学习的有关数字问题的应用题。这部分内容的学习,有助于加深学生对数字问题的理解,进一步掌握列方程组解应用题的方法(相等关系),提高学生解决实际问题的能力。本节课的教学目标为:1.归纳出用二元一次方程组解决实际问题的一般步骤.2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型.3.在解决问题过程中,学会借助图表分析问题,感受化归思想。4.让学生体验把复杂问题化为简单问题策略的同时,培养学生克服困难的意志和勇气.本节课的重点是教学生会用图表分析数字问题。难点是将实际问题转化成二元一次方程组的数学模型;设间接未知数转化解决实际问题。二、教学过程分析本课设计了六个教学环节:第一环节:知识回顾;第二环节:情境引入,新课讲解;第三环节:练习提高;第四环节:合作学习;第五环节:学习反思;第六环节:布置作业。第一环节知识回顾1.一个两位数的十位数字是x,个位数字是y,则这个两位数可表示为:10x+y.2.一个三位数,若百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c.3.一个两位数,十位数字为a,个位数字为b,若在这两位数中间加一个0,得到一个三位数,则这个三位数可表示为:100a+b.4.a为两位数,b是一个三位数,若把a放在b的左边得到一个五位数,则这个五位数可表示为:1000a+b.设计意图:通过复习,为本节课的继续学习做好铺垫。第二环节情境引入1.Flash动画,情景展示。小明星期天开车出去兜风,他在公路上匀速行驶,根据动画中的情景,你能确定他在12:00看到的里程碑上的数吗?12:00是一个两位数,它的两个数字之和为7;13:00十位与个位数字与12:00所看到的正好颠倒了;14:00比12:00时看到的两位数中间多了个0.分析:设小明在12:00看到的数十位数字是x,个位数字是y,那么时刻百位数字十位数字个位数字表达式12:00xy10x+y13:00yx10y+x14:00x0y100x+y相等关系:1.12:00看到的数,两个数字之和是7:x+y=7.2.路程差:12:00-13:00:(10y+x)-(10x+y),13:00-14:00:(100x+y)-(10y+x),路程差相等:(10y+x)-(10x+y)=(100x+y)-(10y+x).根据以上分析,得方程组x+y=7,(10y+x)-(10x+y)=(100x+y)-(10y+x).解方程组x+y=7,(10y+x)-(10x+y)=(100x+y)-(10y+x).整理得xxy=7,y.y=6解得y因此,小明在12:00时看到的里程碑上的数是16.提示:要学会在图表中用含未知数的代数式表示出要分析的量;然后利用相等关系列方程。2.Flash动画,情景再现.3.学法小结:(1)对较复杂的问题可以通过列表格的方法理清题中的未知量、已知量以及等量关系,这样,条理比较清楚.(2)借助方程组解决实际问题.设计意图:生动的情景引入,意在激发学生的学习兴趣;利用图表帮助分析使条理清楚,降低思维难度,并使列方程解决问题的过程更加清晰;学法小结,着重强调分析方法,养成归纳小结的良好习惯。4.变式训练师生共同研究下题:有一个三位数,现将最左边的数字移到最右边,则比原来的数小45;又知百位数字的9倍比由十位数字和个位数字组成的两位数小3,试求原来的3位数.分析:数字问题中,设未知数也很有技巧,此问题中由十位数字和个位数字组成的两位数是一个“整体”,可设为一个未知数y,百位数设为x:百位数字十位数字个位数字表达式原数xy100x+y新数yx10y+x相等关系:1.原三位数-45=新三位数2.9百位数字=两位数-3解:设百位数字为x,由十位数字与个位数字组成的两位数为y,根据题意的得:100x+y=10y+x,9x=y-3.解得x=4,y=39.答:原来的三位数是439.设计意图:设计本题,意在让学生了解,在具体解决问题时,不一定直接设未知数,设间接未知数...