5.1.2二次根式的化简(2)教学内容:=a(a≥0)教学目标:理解=a(a≥0)并利用它进行计算和化简.通过具体数据的解答,探究=a(a≥0),并利用这个结论解决具体问题.教学过程一、复习引入:老师口述并板书上两节课的重要内容;1.形如(a≥0)的式子叫做二次根式;2.(a≥0)是一个非负数;3.()2=a(a≥0).那么,我们猜想当a≥0时,=a是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:=_______;=_______;=______;=________;=________;=_______.(老师点评):根据算术平方根的意义,我们可以得到:=2;=0.01;=;=;=0;=.因此,一般地:=a(a≥0)例1化简(1)(2)(3)(4)分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用=a(a≥0)去化简.解:(1)==3(2)==4(3)==5(4)==3三、巩固练习P157练习3.四、应用拓展例2填空:当a≥0时,=_____;当a<0时,=_______,并根据这一性质回答下列问题.分析:∵=a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0时,=,那么-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知=│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1)因为=a,所以a≥0;(2)因为=-a,所以a≤0;(3)因为当a≥0时=a,要使>a,即使a>a所以a不存在;当a<0时,=-a,要使>a,即使-a>a,a<0综上,a<0例3当x>2,化简-.五、归纳小结本节课应掌握:=a(a≥0)及其运用,同时理解当a<0时,=-a的应用拓展.一、布置作业1.P159习题5.1A组3教学反思: