电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

九年级数学18.1 勾股定理(3)-勾股定理的证明教案VIP免费

九年级数学18.1 勾股定理(3)-勾股定理的证明教案_第1页
1/12
九年级数学18.1 勾股定理(3)-勾股定理的证明教案_第2页
2/12
九年级数学18.1 勾股定理(3)-勾股定理的证明教案_第3页
3/12
18.1勾股定理(3)---勾股定理的证明两千多年来,人们对勾股定理的证明颇感兴趣。因为这个定理太贴近人们的生活实际,以致于古往今来,下至平民百姓,上至帝王总统都愿意探讨它的证明,因此不断涌现新的证法。下面我们一起学习几种证明勾股定理的方法。勾股定理:直角三角形两直角边的平方和等于斜边的平方a2+b2=c2b2c2a2赵爽的“弦图”早在公元3世纪,我国数学家赵爽就用左边的图形验证了“勾股定理”。在北京召开的2002年国际数学家大会(TCM-2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.思考:你能验证吗?赵爽指出:按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实。加差实,亦成弦实。赵爽弦图朱实朱实朱实CcABababc朱实C2=(2×21ab)+(a-b)2a2+b2=2×(4)(3)(2)(1)(1)(2)(3)(4)cccc(a-b)2(a-b)2C2-4×21ab=a2+b2=c2可得:a2+b2-2ab=c2-2abbCa想一想:这四个直角三角形还能怎样拼?证法一babababacccc大正方形的面积该怎样表示?(a+b)2=a2+b2+2ab=c2+2ab可得:a2+b2=c2ab2142c证法二在1876年一个周末的傍晚,美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么,只见一个小男孩正俯着身子,用树枝在地上画一个直角三角形,于是伽菲尔德便问,你们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别是3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少呢?”伽菲尔德不假思索地回答到:“那斜边的平方,一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?……”伽菲尔德一时语塞,无法解释了,心理很不是滋味。于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。证法3(a+b)(b+a)=a2+a2+b2=c2aabbcc伽菲尔德经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法.1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十任总统后,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就称这一证法称为“总统”证法。∟∟∟2121212121c2+2()21+ab+b2=c2ababa2+b2=c2a2b2a2c2毕达哥拉斯证法证法4:你还想知道勾股定理的其它证法吗?请上网查询,你一定会有精彩的发现。若你再能写一点有关勾股定理的小文章,那就更漂亮了。作业:P70---717、8、9、10。

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

九年级数学18.1 勾股定理(3)-勾股定理的证明教案

您可能关注的文档

远洋启航书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部