电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

九年级数学上册 第二章 一元二次方程6 应用一元二次方程第1课时 利用一元二次方程解决几何问题教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案VIP免费

九年级数学上册 第二章 一元二次方程6 应用一元二次方程第1课时 利用一元二次方程解决几何问题教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案_第1页
1/3
九年级数学上册 第二章 一元二次方程6 应用一元二次方程第1课时 利用一元二次方程解决几何问题教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案_第2页
2/3
九年级数学上册 第二章 一元二次方程6 应用一元二次方程第1课时 利用一元二次方程解决几何问题教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案_第3页
3/3
6应用一元二次方程第1课时利用一元二次方程解决几何问题【知识与技能】使学生会用一元二次方程解应用题.【过程与方法】进一步培养学生将实际问题转化为数学问题的能力和分析问题、解决问题的能力,培养学生运用数学的意识.【情感态度】通过列方程解应用题,进一步体会运用代数中方程的思想方法解应用题的优越性.【教学重点】实际问题中的等量关系如何找.【教学难点】根据等量关系设未知数列方程.一、情境导入,初步认识列方程解应用题的步骤是什么?①审题,②设未知数,③列方程,④解方程,⑤答.【教学说明】初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决.但有的实际问题,列出的方程不是一元一次方程,是一元二次方程,这就是我们本节课所研究的问题,一元二次方程的应用.二、思考探究,获取新知问题:有一张长6尺,宽3尺的长方形桌子,现用一块长方形台布铺在桌面上,如果台布的面积是桌面面积的2倍,且四周垂下的长度相同,试求这块台布的长和宽各是多少?(精确到0.1尺)分析:设四周垂下的宽度为x尺时,可知台布的长为(2x+6)尺,宽为(2x+3)尺,利用台布的面积是桌面面积的2倍构建方程可获得结论.解:设四周垂下的宽度为x尺时,依题意可列方程为(6+2x)(3+2x)=2×6×3.整理方程,得2x2+9x-9=0.解得x1≈0.84,x2≈-5.3(不合题意,舍去).即这块台布的长约为7.7尺,宽约为4.7尺.【教学说明】注意引导学生分析、理清题目中的数量关系,挖掘已知条件与要解决问题,激发学生解决问题的欲望,体会数形结合思想的应用.三、运用新知,深化理解1.见教材P52例1.2.直角三角形的两条直角边的和为7,面积是6,则斜边长为(B)A.B.5C.D.73.从正方形铁皮的一边切去一个2cm宽的长方形,若余下的长方形的面积为48cm2,则原来正方形的铁皮的面积为64cm2.4.如图,在一幅矩形地毯的四周镶有宽度相同的花边,地毯中间的矩形图案的长为6m,宽为3m,若整个地毯的面积为40m2,求花边的宽.解:设花边的宽为xm,依题意有(6+2x)(3+2x)=40,解得x1=1,x2=(不合题意应舍去).即花边的宽度为1m.5.如右图是长方形鸡场的平面示意图,一边靠墙,另外三边用竹篱笆围成,且竹篱笆总长为35m.(1)若所围的面积为150m2,试求此长方形鸡场的长和宽;(2)如果墙长为18m,则(1)中长方形鸡场的长和宽分别是多少?(3)能围成面积为160m2的长方形鸡场吗?说说你的理由.分析:如图,若设BC=xm,则AB的长为m,若设AB=xm,则BC=(35-2x)m,再利用题设中的等量关系,可求出(1)的解;在(2)中墙长a=18m意味着BC边长应小于或等于18m,从而对(1)的结论进行甄别即可;(3)中可借助(1)的解题思路构建方程,依据方程的根的情况可得到结论.解:(1)设BC=xm,则AB=CD=m,依题意可列方程为x·=150,解这个方程,得x1=20,x2=15.当BC=x=20m时,AB=CD=7.5m,当BC=15m时,AB=CD=10m.即这个长方形鸡场的长与宽分别为20m和7.5m或15m和10m;(2)当墙长为18m时,显然BC=20m时,所围成的鸡场会在靠墙处留下一个缺口,不合题意,应舍去,此时所围成的长方形鸡场的长与宽只能是15m和10m;(3)不能围成面积为160m2的长方形鸡场,理由如下:设BC=xm,由(1)知AB=m,从而有x·=160,方程整理为x2-35x+320=0.此时Δ=352-4×1×320=1225-1280<0,原方程没有实数根,从而知用35m的篱笆按图示方式不可能围成面积为160m2的鸡场.6.如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从点C出发沿CB边向点B以2cm/s的速度移动.当其中一点到达终点时,另一点也随之停止运动.(1)如果P,Q同时出发,几秒钟后,可使△PCQ的面积为8cm2?(2)点P,Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半?分析:(1)如果P,Q同时出发,xs后,AP=xcm,PC=(6-x)cm,CQ=2xcm,此时△PCQ的面积为×2x(6-x),令该式=8,由此等量关系列出方程求出符合题意值;(2)△ABC的面积的一半等于×AC·BC=12(cm2),令×2x(6-x)=12,判断该方程是否有解,若有解则存在,否则不存在.解:(1)设xs后,可使△PCQ的面积为8cm2....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

九年级数学上册 第二章 一元二次方程6 应用一元二次方程第1课时 利用一元二次方程解决几何问题教案 (新版)北师大版-(新版)北师大版初中九年级上册数学教案

您可能关注的文档

远洋启航书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部