电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(考前大通关)高考数学二轮专题复习 第二部分应试高分策略《第四讲 解答题的解法》考前优化训练 理VIP免费

(考前大通关)高考数学二轮专题复习 第二部分应试高分策略《第四讲 解答题的解法》考前优化训练 理_第1页
1/3
(考前大通关)高考数学二轮专题复习 第二部分应试高分策略《第四讲 解答题的解法》考前优化训练 理_第2页
2/3
(考前大通关)高考数学二轮专题复习 第二部分应试高分策略《第四讲 解答题的解法》考前优化训练 理_第3页
3/3
1.(2011年高考福建卷)设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(1)若点P的坐标为,求f(θ)的值;(2)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.解:(1)由点P的坐标和三角函数的定义可得于是f(θ)=sinθ+cosθ=×+=2.(2)作出平面区域Ω(即三角形区域ABC)如图,其中A(1,0),B(1,1),C(0,1).于是0≤θ≤.又f(θ)=sinθ+cosθ=2sin(θ+),且≤θ+≤,故当θ+=,即θ=时,f(θ)取得最大值,且最大值等于2;当θ+=,即θ=0时,f(θ)取得最小值,且最小值等于1.2.已知函数f(x)=kx+b,-1≤x≤1,k,b∈R,且是常数.若k是从-2,-1,0,1,2五个数中任取的1个数,b是从0,1,2三个数中任取的1个数,求函数y=f(x)是奇函数的概率.解:函数f(x)为奇函数的条件是b=0,基本事件共有5×3=15个,设事件A:“函数y=f(x)是奇函数”,则事件A包含的基本事件是(-2,0),(-1,0),(0,0),(1,0),(2,0).所以P(A)==.3.如图所示,已知在直三棱柱ABC-A1B1C1中,∠ACB=90°,E为棱CC1上的动点,F是线段AB的中点,AC=BC=2,AA1=4.(1)求证:CF⊥平面ABB1;(2)当E是棱CC1的中点时,求证:CF∥平面AEB1;(3)在棱CC1上是否存在点E,使得二面角A-EB1-B的大小是45°?若存在,求CE的长;若不存在,说明理由.解:(1)证明:在直三棱柱ABC-A1B1C1中,侧棱B1B⊥底面ABC,∵CF⊂平面ABC,∴B1B⊥CF.∵AC=BC,F是线段AB的中点,∴CF⊥AB.∵AB,B1B是平面ABB1内两相交直线,∴CF⊥平面ABB1.(2)证明:如图所示,取AB1的中点D,连接ED,DF.∵DF是△ABB1的中位线,∴DF綊B1B.∵E是棱CC1的中点,∴EC綊B1B.∴DF綊EC.∴四边形EDFC是平行四边形.∴CF∥ED.∵CF⊄平面AEB1,ED⊂平面AEB1,∴CF∥平面AEB1.(3)假设存在点E,使二面角A-EB1-B的大小为45°,由于∠ACB=90°,易证AC⊥平面BEB1,过C点作CK⊥直线B1E于K,连接AK,则∠AKC为二面角A-EB1-B的平面角,∴∠AKC=45°.∴CK=AC=2,设CE=x,则=,x=,故线段CE=.综上,在棱CC1上存在点E,使得二面角A-EB1-B的大小是45°,此时CE=.4.(2011年高考四川卷)已知{an}是以a为首项,q为公比的等比数列,Sn为它的前n项和.当S1,S3,S4成等差数列时,求q的值;当Sm,Sn,Sl成等差数列时,求证:对任意自然数k,am+k,an+k,al+k也成等差数列.解:由已知,得an=aqn-1,因此S1=a,S3=a,S4=a.当S1,S3,S4成等差数列时,S4-S3=S3-S1,可得aq3=aq+aq2,化简得q2-q-1=0.解得q=.若q=1,则{an}的各项均为a,此时am+k,an+k,al+k显然成等差数列.若q≠1,由Sm,Sn,Sl成等差数列可得Sm+Sl=2Sn,即+=,整理得qm+ql=2qn.因此,am+k+al+k=aqk-1=2aqn+k-1=2an+k.所以,am+k,an+k,al+k成等差数列.5.(2011年高考北京卷)已知椭圆G:+y2=1.过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点.(1)求椭圆G的焦点坐标和离心率;(2)将|AB|表示为m的函数,并求|AB|的最大值.解:(1)由已知得a=2,b=1,所以c==.所以椭圆G的焦点坐标为(-,0),(,0),离心率为e==.(2)由题意知,|m|≥1.当m=1时,切线l的方程为x=1,点A,B的坐标分别为,,此时|AB|=.当m=-1时,同理可得|AB|=.当|m|>1时,设切线l的方程为y=k(x-m).由,得(1+4k2)x2-8k2mx+4k2m2-4=0.设A,B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=,x1x2=.又由l与圆x2+y2=1相切,得=1,即m2k2=k2+1.所以|AB|====.由于当m=±1时,|AB|=,所以|AB|=,m∈(-∞,-1]∪[1,+∞).因为|AB|==≤2,且当m=±时,|AB|=2,所以|AB|的最大值为2.6.已知函数f(x)=ex+ax,g(x)=exlnx.(e≈2.71828)(1)设曲线y=f(x)在x=1处的切线与直线x+(e-1)y=1垂直,求a的值;(2)若对于任意实数x≥0,f(x)>0恒成立,试确定实数a的取值范围.解:(1)由题知,f′(x)=ex+a.因此曲线y=f(x)在点(1,f(1))处的切线l的斜率为e+a,又直线x+(e-1)y=1的斜率为,∴(e+a)=-1,∴a=-1.(2)∵当x≥0时,f(x)=ex+ax>0恒成立;∴若x=0,a为任意实数,f(x)=ex+ax>0恒成立.若x>0,f(x)=ex+ax>0恒成立,即当x>0时,a>-恒成立.设Q(x)=-,Q′(x)=-=.当x∈(0,1)时,Q′(x)>0,则Q(x)在(0,1)上单调递增,当x∈(1,+∞)时,Q′(x)<0,则Q(x)在(1,+∞)上单调递减.∴当x=1时,Q(x)取得最大值.Q(x)max=Q(1)=-e,∴要使x≥0时,f(x)>0恒成立,a的取值范围为(-e,+∞).

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(考前大通关)高考数学二轮专题复习 第二部分应试高分策略《第四讲 解答题的解法》考前优化训练 理

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部