电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

基于AT89C51单片机的变频调速控制系统设计VIP免费

基于AT89C51单片机的变频调速控制系统设计_第1页
基于AT89C51单片机的变频调速控制系统设计_第2页
基于AT89C51单片机的变频调速控制系统设计_第3页
基于AT89C51单片机的变频调速控制系统设计1.概述在电气传动领域中,随着自关断器件技术水平的不断提高,脉宽调制技术(简称PWM技术)也日趋成熟。PMW交流变频调速以其高效率、高功率因数、输出波形好、结构简单等优点,在井下风机、水泵、造纸机等设备中得到了广泛的应用。将单片机应用于交流变频调速系统,可有效地避免传统调速方案中的一些缺点,达到了提高控制精度的目的,其特点:(1)采用单片机可以使绝大多数控制逻辑通过软件实现,简化了电路。(2)单片机具有更强的逻辑功能,运算速度快,精度高,有大容量的存储单元,可以实现较为复杂的控制。(3)无零点漂移,控制精度高。(4)可以提供人机界面,多机连网工作。根据国内外有关变频调速的最新研究成果及研究动向,参阅大量的文献、资料,本着先进性与成熟性兼顾、标准化、可靠性、连续性、及时性的系统设计原则,设计了如图1所示的系统结构框图。图1系统结构框图图2整流电路整个电路分为三大部分:主回路、驱动电路以及用单片机控制PWM产生器的控制电路,另外还有过流检测和保护电路,这样使得系统工作更稳定、可靠。2.系统主回路设计2.1整流滤波电路的设计为了给逆变器提供一个稳定的直流电压,需要将电网输入的交流电进行整流。通常整流电路可分为可控整流和不可控整流。可控整流可以使系统的功率因数接近l,并且具有较小的纹波,频率高,可降低较小幅值的滤波电容。但是采用可控整流电路会使得系统成本上升,并且控制电路复杂。目前比较经济可靠的方案,一般都是采用二极管整流,使电网功率因数与逆变输出电压无关而接近于1。在本系统中,我们采用了三相二极管不可控整流,如图2所示,采用它无需控制电路驱动,电路简单、可靠,成本低,缺点就是纹波较大,需采用较大幅值的滤波电容。2.2三相逆变电路的设计三相交流负载需要三相逆变器,在三相逆变电路中,应用最广的是三相桥式逆变电路。采用IGBT作为可控元件的电压型三相逆变电路如图3所示,可以看出电路由三个半桥组成。图3三相逆变电路图4IR2110驱动半桥电路电压型三相逆变桥的基本工作方式与单相逆变桥相同,是导电方式,即每个桥臂的导电角度为,同一相(同一半桥)上下两个臂交替导电,各相开始导电的时间依次相差。这样,在任一瞬间,将有三个桥臂同时导通。可能是上面一个臂,下面两个臂,也可能是上面两个臂下面一个臂同时导通。因为每次换流都是在同一相上下两个桥臂之间进行的,因此,也被称为纵向换流。用T记为周期,只要注重三相之间互隔T/3(T是周期)就可以了,即B相比A相滞后T/3,C相又比B相滞后T/3。具体的导通顺序如下:第1个T/6:V1,V6,V5导通,V4,V3,V2截至;第2个T/6:Vl,V6,V2导通,V4,V3,V5截至;第3个T/6:V1,V3,V2导通,V4,V6,V5截至;第4个T/6:V4,V3,V2导通,V1,V6,V5截至;第5个T/6:V4,V3,V5导通,V1,V6,V2截至;第6个T/6:V4,V6,V5导通,V1,V3,V2截至。3驱动电路及系统保护电路的设计3.1驱动电路的设计作为功率开关器件,IGBT的工作状态直接关系到整机的性能,所以选择或设计合理的驱动电路显得尤为重要。采用一个性能良好的驱动电路,可使IGBT工作在比较理想的开关状态,缩短开关时间,减小开关损耗,对提高整个装置的运行效率,可靠性和安全性都有重要的意义。驱动电路必须具备两个功能:一是实现控制电路与被驱动IGBT栅极的电隔离;二是提供合适的栅极驱动脉冲[3]。对驱动电路的要求,可归纳如下:1)IGBT和MOSFET都是电压驱动,都具有一个2.5~5V值电压,有一个容性输入阻抗,因此IGBT对栅极电荷非常敏感,故驱动电路必须很可靠,要保证有一条低阻抗值的放电回路,即驱动电路与IGBT的连线要尽量短。2)用内阻小的驱动源对栅极电容充放电,以保证栅极控制电压Uge,有足够陡的前后沿,使IGBT的开关损耗尽量小。另外,IGBT开通后,栅极驱动源应能提供足够的功率,使IGBT不退出饱和而损坏。3)驱动电路要能传递几十kHz的脉冲信号。4)在大电感负载下,IGBT的开关时间不能太短,以限制出di/dt形成的尖峰电压,确保IGBT的安全。5)IGBT的栅极驱动电路应尽可能简单实用,最好自身带有对IGBT的保护功能,有较强的抗干扰能力。本文采用美国IR公司推出的IR21...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

海纳百川+ 关注
实名认证
内容提供者

热爱教学事业,对互联网知识分享很感兴趣

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部