对《完全平方公式》的教学设计与反思教材“完全平方公式”内容共含两课时。本节是其中的第一课时,需40分钟完成。具体教学过程设计如下:环节一:学生练习、暴露问题活动内容:计算:(a+2)2设想学生的做法有以下几种可能:①(a+2)2=a2+22②(a+2)2=a2+2a+22③正确做法;针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢怎么验证?活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:(a+2)2=a2+22,如果不将这种定式思维推翻,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.环节二:验证(a+2)2=a2–4a+22活动内容:(a+2)2=(a+2)•(a+2)=a2+2a+2a+22活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.环节三:推广到一般情况,形成公式活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐环节四:分析问题1、学生分组交流、讨论多项式的结构特点(2m+3n)2=(2m)2+2·2m·3n+(3n)2=4m2+12mn+9n2,(2m-3n)2=(2m)2-2·2m·3n+(3n)2=4m2-12mn+9n2,(1)原式的特点。两数和的平方。(2)结果的项数特点。等于它们平方的和,加上它们乘积的两倍(3)三项系数的特点(特别是符号的特点)。(4)三项与原多项式中两个单项式的关系。2、[学生回答]总结完全平方公式的语言描述:两数和的平方,等于它们平方的和,加上它们乘积的两倍;两数差的平方,等于它们平方的和,减去它们乘积的两倍。3、[学生回答]完全平方公式的数学表达式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.环节五:公式应用你能运用公式计算下列各式吗?(-x-3)2=______________,(-x+3)2=_______________。(-2m-3n)2=______________,(-2m+3n)2=_______________。环节六:随堂练习1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)(m+n)2=____________,(m-n)2=_______________,(-m+n)2=____________,(-m-n)2=______________,(-7-a)2=______________,(0.5-a)2=______________.2、判断:()①(a-2b)2=a2-2ab+b2()②(2m+n)2=2m2+4mn+n2()③(-n-3m)2=n2-6mn+9m2()④(5a+0.2b)2=25a2+5ab+0.4b23、小试牛刀①(x+y)2=______________;②(-y-x)2=_______________;③(2x+3)2=_____________;④(3a-2)2=_______________;⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.环节七:学生反思活动内容:你认为完全平方公式在应用过程中,需要注意那些问题?(1)公式右边共有3项。(2)两个平方项符号永远为正。(3)中间项的符号由等号左边的两项符号是否相同决定。(4)中间项是等号左边两项乘积的2倍。活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙教学设计反思1、在学习完全平方公式之前,总会有相当一部分同学认为(a+b)2=a2+b2,甚至有很多学生在学习了这个公式之后也依然有这种概念存在,这就形成了“相异构想”,要将这种错误的前概念消灭在萌芽状态,仅靠反复说教很难行得通,只有让他的错误大暴露,然后“动手术”剔除才能彻底消灭,由此就产生这种结构的教学设计;2、完全平方公式一定要在学生充分探究的基础上得出,这是一个培养学生推理能力的好机会,切不可为抢进度,冒然给出公式,然后记忆、再用大量的时间进行反复练习,如果这样做,可能学生会应用得很好,但只是知其然,却不知其所以然,对学生的将来发展不利;3、学生练习活动的设计可以有效地调动学生的学习积极性,让学生学习在一个轻松活泼的学习环境中,避免那种枯燥无味的、单调反复的训练,防止学生陷入麻木、机械的练习,最终失去的是学生对数学的兴趣;4、学生的反思不能满足于简单的回顾,而旨在发掘学生思想的火花,发掘更深层次的理解.