8.1坐标系与参数方程(二选一)命题角度1极坐标与直角坐标、参数方程与普通方程的互化高考真题体验·对方向1.(2019全国Ⅰ·22)在直角坐标系xOy中,曲线C的参数方程为{x=1-t21+t2,y=4t1+t2(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+❑√3ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.解(1)因为-1<1-t21+t2≤1,且x2+(y2)2=(1-t21+t2)2+4t2(1+t2)2=1,所以C的直角坐标方程为x2+y24=1(x≠-1).l的直角坐标方程为2x+❑√3y+11=0.(2)由(1)可设C的参数方程为{x=cosα,y=2sinα(α为参数,-π<α<π).C上的点到l的距离为|2cosα+2❑√3sinα+11|❑√7=4cos(α-π3)+11❑√7.当α=-2π3时,4cos(α-π3)+11取得最小值7,故C上的点到l距离的最小值为❑√7.2.(2018全国Ⅰ·22)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.解(1)由x=ρcosθ,y=ρsinθ得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y轴左边的射线为l2,由于B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,A到l1所在直线的距离为2,所以|-k+2|❑√k2+1=2,故k=-43或k=0.经检验,当k=0时,l1与C2没有公共点;当k=-43时,l1与C2只有一个公共点,l2与C2有两个公共点.当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以|k+2|❑√k2+1=2,故k=0或k=43,经检验,当k=0时,l1与C2没有公共点;当k=43时,l2与C2没有公共点.综上,所求C1的方程为y=-43|x|+2.3.(2018全国Ⅱ·22)在直角坐标系xOy中,曲线C的参数方程为{x=2cosθ,y=4sinθ(θ为参数),直线l的参数方程为{x=1+tcosα,y=2+tsinα(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.解(1)曲线C的直角坐标方程为x24+y216=1.当cosα≠0时,l的直角坐标方程为y=tanα·x+2-tanα,当cosα=0时,l的直角坐标方程为x=1.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程(1+3cos2α)t2+4(2cosα+sinα)t-8=0,①因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为t1,t2,则t1+t2=0.又由①得t1+t2=-4(2cosα+sinα)1+3cos2α,故2cosα+sinα=0,于是直线l的斜率k=tanα=-2.4.(2018全国Ⅲ·22)在平面直角坐标系xOy中,☉O的参数方程为{x=cosθ,y=sinθ(θ为参数),过点(0,-❑√2)且倾斜角为α的直线l与☉O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.解(1)☉O的直角坐标方程为x2+y2=1.当α=π2时,l与☉O交于两点.当α≠π2时,记tanα=k,则l的方程为y=kx-❑√2,l与☉O交于两点当且仅当|❑√2❑√1+k2|<1,解得k<-1或k>1,即α∈(π4,π2)或α∈(π2,3π4).综上,α的取值范围是(π4,3π4).(2)l的参数方程为{x=tcosα,y=-❑√2+tsinαt为参数,π4<α<3π4.设A,B,P对应的参数分别为tA,tB,tP,则tP=tA+tB2,且tA,tB满足t2-2❑√2tsinα+1=0.于是tA+tB=2❑√2sinα,tP=❑√2sinα.又点P的坐标(x,y)满足{x=tPcosα,y=-❑√2+tPsinα.所以点P的轨迹的参数方程是{x=❑√22sin2α,y=-❑√22-❑√22cos2αα为参数,π4<α<3π4.5.(2017全国Ⅰ·22)在直角坐标系xOy中,曲线C的参数方程为{x=3cosθ,y=sinθ,(θ为参数),直线l的参数方程为{x=a+4t,y=1-t,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为❑√17,求a.解(1)曲线C的普通方程为x29+y2=1.当a=-1时,直线l的普通方程为x+4y-3=0.由{x+4y-3=0,x29+y2=1,解得{x=3,y=0或{x=-2125,y=2425.从而C与l的交点坐标为(3,0),(-2125,2425).(2)直线l的普通方程为x+4y-a-4=0,故C上的点(3cosθ,sinθ)到l的距离为d=|3cosθ+4sinθ-a-4|❑√17.当a≥-4时,d的最大值为a+9❑√17.由题设得a+9❑√17=❑√17,所以a=8;当a<-4时,d的最大值为-a+1❑√17.由题设...