电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数二轮复习 专题强化训练1 第2讲 函数与方程及函数的应用 文(含解析)VIP免费

高考数二轮复习 专题强化训练1 第2讲 函数与方程及函数的应用 文(含解析)_第1页
1/4
高考数二轮复习 专题强化训练1 第2讲 函数与方程及函数的应用 文(含解析)_第2页
2/4
高考数二轮复习 专题强化训练1 第2讲 函数与方程及函数的应用 文(含解析)_第3页
3/4
第2讲函数与方程及函数的应用(建议用时:60分钟)一、选择题1.(·湖南卷)函数f(x)=网2lnx的图象与函数g(x)=x2-4x+5的图象的交点个数为().A.3B.2C.1D.0解析由已知g(x)=(x-2)2+1,所以其顶点为(2,1),又f(2)=2ln2∈(1,2),可知点(2,1)位于函数f(x)=2lnx图象的下方,故函数f(x)=2lnx的图象与函数g(x)=x2-4x+5的图象有2个交点.答案B2.“a>3”是“函数f(x)=ax+3在(-1,2)上存在零点”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由于“函数f(x)=ax+3在(-1,2)上存在零点”⇔f(-1)f(2)<0⇔(-a+3)(2a+3)<0⇔a<-或a>3,则“a>3”是“函数f(x)=ax+3在(-1,2)上存在零点”的充分不必要条件.答案A3.已知函数f(x)=则函数f(x)的零点为().A.,0B.-2,0C.D.0解析当x≤1时,由f(x)=2x-1=0,解得x=0;当x>1时,由f(x)=1+log2x=0,解得x=,又因为x>1,所以此时方程无解.综上,函数f(x)的零点只有0,故选D.答案D4.函数f(x)=x-sinx在区间[0,2π]上的零点个数为().A.1B.2C.3D.4解析在同一坐标系内作出函数y=x及y=sinx在[0,2π]上的图象,发现它们有两个交点,即函数f(x)在[0,2π]上有两个零点.答案B5.设函数f(x)=x-lnx(x>0),则y=f(x)().A.在区间,(1,e)内均有零点B.在区间,(1,e)内均无零点C.在区间内有零点,在区间(1,e)内无零点D.在区间内无零点,在区间(1,e)内有零点解析法一因为f=·-ln=+1>0,f(1)=-ln1=>0,f(e)=-lne=-1<0,∴f·f(1)>0,f(1)·f(e)<0,故y=f(x)在区间内无零点(f(x)在内根据其导函数判断可知单调递减),在区间(1,e)内有零点.法二在同一坐标系中分别画出y=x与y=lnx的图象,如图所示.由图象知零点存在区间(1,e)内.答案D6.若函数y=f(x)(x∈R)满足f(x+1)=-f(x),且x∈[-1,1]时f(x)=1-x2.函数g(x)=则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点的个数为().A.7B.8C.9D.10解析由f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),所以函数f(x)的周期为2,求h(x)=f(x)-g(x)在区间[-5,4]内的零点,即求f(x)=g(x)在区间[-5,4]上图象交点的个数.画出函数f(x)与g(x)的图象,如图,由图可知两图象在[-5,4]之间有7个交点,所以所求函数有7个零点,选A.答案A7.(·重庆卷)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间().A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内解析由于a0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0.因此有f(a)·f(b)<0,f(b)·f(c)<0,又因f(x)是关于x的二次函数,函数的图象是连续不断的曲线,因此函数f(x)的两零点分别位于区间(a,b)和(b,c)内,故选A.答案A二、填空题8.一块形状为直角三角形的铁皮,两直角边长分别为40cm、60cm,现要将它剪成一个矩形,并以此三角形的直角为矩形的一个角,则矩形的最大面积是________cm2.解析设直角边为40cm和60cm上的矩形边长分别为xcm、ycm,则=,解得y=60-x.矩形的面积S=xy=x=-(x-20)2+600,当x=20时矩形的面积最大,此时S=600.答案6009.已知[x]表示不超过实数x的最大整数,如[1.8]=1,[-1.2]=-2.x0是函数f(x)=lnx-的零点,则[x0]=________.解析函数f(x)的定义域为(0,+∞),且易判断函数f(x)在(0,+∞)上单调递增.由f(2)=ln2-1<0,f(e)=lne->0,知x0∈(2,e),∴[x0]=2.答案210.(·新课标全国Ⅰ卷)已知函数f(x)=若|f(x)|≥ax,则a的取值范围是________.解析当x≤0时,f(x)=-x2+2x=-(x-1)2+1≤0,所以|f(x)|≥ax,化简为x2-2x≥ax,即x2≥(a+2)x,因为x≤0,所以a+2≥x恒成立,所以a≥-2;当x>0时,f(x)=ln(x+1)>0,所以|f(x)|≥ax化简为ln(x+1)>ax恒成立,由函数图象可知a≤0,综上,当-2≤a≤0时,不等式|f(x)|≥ax恒成立,故填[-2,0].答案[-2,0]11.(·福建卷)函数f(x)=的零点个数是________.解析分段函数分别在每一段上判断零点个数,单调函数的零点至多有一个.当x≤0时,令x2-2=0,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数二轮复习 专题强化训练1 第2讲 函数与方程及函数的应用 文(含解析)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部