专题10立体几何文【2015/2016】1、【2015高考上海文数】若正三棱柱的所有棱长均为,且其体积为,则.【答案】4【解析】依题意,,解得.【考点定位】等边三角形的性质,正三棱柱的性质.【名师点睛】正三棱柱的底面是正三角形,侧棱垂直于底面.柱体的体积等于底面积乘以高.边长为的正三角形的面积为.2.【2015高考上海文数】(本题满分12分)如图,圆锥的顶点为,底面的一条直径为,为半圆弧的中点,为劣弧的中点.已知,,求三棱锥的体积,并求异面直线与所成角的大小.【答案】所以异面直线与所成角的大小.【考点定位】圆锥的性质,异面直线的夹角.【名师点睛】“”求异面直线所成的角常采用平移线段法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.3.【2016高考上海文数】如图,在正方体ABCD−A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是().(A)直线AA1(B)直线A1B1(C)直线A1D1(D)直线B1C1【答案】D【考点】异面直线【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好地考查考生分析问题与解决问题的能力、空间想象能力等.4.【2016高考上海文数】(本题满分12分)本题共有2个小题,第1个小题满分6分,第2个小题满分6分.将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.【答案】(1),;(2).【解析】【考点】几何体的体积、空间角【名师点睛】此类题目是立体几何中的常见问题.解答此类试题时,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,将空间问题转化成平面问题.本题能较好地考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等.一.基础题组1.【2014上海,文8】在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..2.【2013上海,文10】已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A、B是下底面圆周上两个不同的点,BC是母线,如图.若直线OA与BC所成角的大小为,则=______.【答案】【解析】由题知,.3.【2012上海,文5】一个高为2的圆柱,底面周长为2π.该圆柱的表面积为__________.【答案】6π4.【2011上海,文7】若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积是________.【答案】3π【解析】5.【2010上海,文6】已知四棱椎P—ABCD的底面是边长为6的正方形,侧棱PA⊥底面ABCD,且PA=8,则该四棱椎的体积是________.【答案】966.(2009上海,文5)如图,若正四棱柱ABCD—A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是______________.(结果用反三角函数值表示)【答案】【解析】 BC∥AD,∴∠CBD1等于异面直线BD1与AD所成的角.在Rt△BCD1中, BC=2,,∴tan∠CBD1=.∴∠CBD1=.7.(2009上海,文6)若球O1、O2表面积之比,则它们的半径之比=__________.【答案】2【解析】由,得.8.(2009上海,文8)若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是__________.【答案】9.(2009上海,文16)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是()【答案】B【解析】由于主视图是在几何体的正前方,用垂直于投影面的光线照射几何体而得到的投影,易知图形B符合题意.10.【2007上海,文7】如图,在直三棱柱中,,,,则异面直线与所成角的大小是(结果用反三角函数值表示).【答案】【解析】11.【2007上海,文16】(本题满分12分)在正四棱锥中,,直线与平面所成的角为,求正四棱锥的体积.【答案】【解析】作平面,垂足为.连接,是正方形的中心,是直线与平面所成的角.=,.,,,.12.【2006上海,文16】“如果一条直线与一个平面垂直,那么,称此直线与...