电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学圆锥曲线的综合问题 苏教版VIP免费

高三数学圆锥曲线的综合问题 苏教版_第1页
1/9
高三数学圆锥曲线的综合问题 苏教版_第2页
2/9
高三数学圆锥曲线的综合问题 苏教版_第3页
3/9
高三数学圆锥曲线的综合问题苏教版【本讲教育信息】一.教学内容:圆锥曲线的综合问题二.教学目标:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程.(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质.(4)了解圆锥曲线的初步应用.三.知识要点:解析几何是联系初等数学与高等数学的纽带,它本身侧重于形象思维、推理运算和数形结合,综合了代数、三角、几何、向量等知识.反映在解题上,就是根据曲线的几何特征准确地转换为代数形式,根据方程画出图形,研究几何性质.学习时应熟练掌握函数与方程的思想、数形结合的思想、参数的思想、分类与转化的思想等,以达到优化解题的目的.具体来说,有以下三方面:(1)确定曲线方程,实质是求某几何量的值;含参数系数的曲线方程或变化运动中的圆锥曲线的主要问题是定值、最值、最值范围问题,这些问题的求解都离不开函数、方程、不等式的解题思想方法.有时题设设计得非常隐蔽,这就要求认真审题,挖掘题目的隐含条件作为解题突破口.(2)解析几何也可以与数学其他知识相联系,这种综合一般比较直观,在解题时保持思维的灵活性和多面性,能够顺利进行转化,即从一知识转化为另一知识.(3)解析几何与其他学科或实际问题的综合,主要体现在用解析几何知识去解有关知识,具体地说就是通过建立坐标系,建立所研究曲线的方程,并通过方程求解来回答实际问题新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆在这一类问题中“实际量”与“数学量”的转化是易出错的地方,这是因为在坐标系中的量是“数量”,不仅有大小还有符号.【典型例题】例1.设有一颗彗星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此彗星离地球相距m万千米和m万千米时,经过地球和彗星的直线与椭圆的长轴夹角分别为和,求该彗星与地球的最近距离.分析:本题的实际意义是求椭圆上一点到焦点的距离,一般的思路:由直线与椭圆的关系,列方程组解之;或利用定义法抓住椭圆的第二定义求解.同时,还要注意结合椭圆的几何意义进行思考.仔细分析题意,由椭圆的几何意义可知:只有当该彗星运行到椭圆的较近顶点处时,彗星与地球的距离才达到最小值即为a-c,这样就把问题转化为求a,c或a-c.解:建立如上图所示直角坐标系,设地球位于焦点F(-c,0)处,椭圆的方程为+=1,当过地球和彗星的直线与椭圆的长轴夹角为时,由椭圆的几何意义可知,彗星A只能满用心爱心专心115号编辑1足∠xFA=(或∠xFA′=).作AB⊥Ox于B,则|FB|=|FA|=m,故由椭圆的第二定义可得m=(-c)①且m=(-c+m)②两式相减得m=·m,∴a=2c.代入①,得m=(4c-c)=c,∴c=m.∴a-c=c=m.答:彗星与地球的最近距离为m万千米点评:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个端点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是a-c,另一个是a+c.(2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想.另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质.例2.某工程要挖一个横断面为半圆的柱形的坑,挖出的土只能沿道路AP、BP运到P处(如图所示).已知PA=100m,PB=150m,∠APB=60°,试说明怎样运土最省工.分析:首先抽象为数学问题,半圆中的点可分为三类:(1)沿AP到P较近;(2)沿BP到P较近;(3)沿AP、BP到P同样远.显然,第三类点是第一、二类的分界点,设M是分界线上的任意一点新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆则有|MA|+|PA|=|MB|+|PB|.于是|MA|-|MB|=|PB|-|PA|=150-100=50.从而发现第三类点M满足性质:点M到点A与点B的距离之差等于常数50,由双曲线定义知,点M在以A...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学圆锥曲线的综合问题 苏教版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部