电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学二轮专题 导数运用解析VIP免费

高三数学二轮专题 导数运用解析_第1页
1/12
高三数学二轮专题 导数运用解析_第2页
2/12
高三数学二轮专题 导数运用解析_第3页
3/12
第六讲导数的应用命题要点:(1)导数的实际背景与几何意义;(2)导数的基本运算;(3)利用导数研究函数的单调性;(4)利用导数研究函数的极值与最值。命题趋势:(1)导数的几何意义是高考考查的重要内容,常与解析几何知识交汇命题,多以选择、填空题的形式出现,有时也出现在简答题中关键的一步,其中常求曲线在某点的切线问题——切线的斜率、倾斜角、切线方程等是考查的重点与热点;(2)导数的运算时导数的基本内容,虽然高考很少命题,但它在考查导数的应用中同时出现,多涉及三次函数、对数函数、指数函数、正余弦函数等以及由他们复合而成的函数的求导问题,主要考查对初等函数的导数熟练记忆与导数运算法则的正确运用;(3)导数在研究函数的单调性及最值等方面有着传统工具无法比拟的优越性,是研究函数、方程、不等式等知识的重要工具。从今几年各个地区高考题看,利用导数求函数的单调区间及最值、极值的试题频率较高,多以选择和填空题的形式出现,难度不大,随着高考导数在函数知识中的应用逐步加深,导数的综合运用得到加强,其中利用导数讨论方程的根,恒成立问题等常在高考中多以简答题的形式出现。题型分析:类型一利用导数研究切线问题导数的几何意义(1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0)(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).方法总结:首先要分清是求曲线y=f(x)在某处的切线还是求过某点曲线的切线.(1)求曲线y=f(x)在x=x0处的切线方程可先求f′(x0),利用点斜式写出所求切线方程;(2)求过某点的曲线的切线方程要先设切点坐标,求出切点坐标后再写切线方程.[例1](2012年高考安徽卷改编)设函数f(x)=aex++b(a>0).在点(2,f(2))处的切线方程为y=x,求a,b的值.[解析] f′(x)=aex-,∴f′(2)=ae2-=,解得ae2=2或ae2=-(舍去),所以a=,代入原函数可得2++b=3,即b=,故a=,b=.跟踪训练已知函数f(x)=x3-x.1(1)求曲线y=f(x)的过点(1,0)的切线方程;(2)若过x轴上的点(a,0)可以作曲线y=f(x)的三条切线,求a的取值范围.解析:(1)由题意得f′(x)=3x2-1.曲线y=f(x)在点M(t,f(t))处的切线方程为y-f(t)=f′(t)(x-t),即y=(3t2-1)·x-2t3,将点(1,0)代入切线方程得2t3-3t2+1=0,解得t=1或-,代入y=(3t2-1)x-2t3得曲线y=f(x)的过点(1,0)的切线方程为y=2x-2或y=-x+.(2)由(1)知若过点(a,0)可作曲线y=f(x)的三条切线,则方程2t3-3at2+a=0有三个相异的实根,记g(t)=2t3-3at2+a.则g′(t)=6t2-6at=6t(t-a).当a>0时,函数g(t)的极大值是g(0)=a,极小值是g(a)=-a3+a,要使方程g(t)=0有三个相异的实数根,需使a>0且-a3+a<0,即a>0且a2-1>0,即a>1;当a=0时,函数g(t)单调递增,方程g(t)=0不可能有三个相异的实数根;当a<0时,函数g(t)的极大值是g(a)=-a3+a,极小值是g(0)=a,要使方程g(t)=0有三个相异的实数根,需使a<0且-a3+a>0,即a<0且a2-1>0,即a<-1.综上所述,a的取值范围是(-∞,-1)∪(1,+∞).点评:由导数几何意义先求斜率,再求方程,注意点是否在曲线上,是否为切点.类型二利用导数研究函数的单调性函数的单调性与导数的关系在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增;如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减.方法总结:函数在指定区间上单调递增(减),函数在这个区间上的导数大于或等于0(小于或等于0),只要不在一段连续区间上恒等于0即可,求函数的单调区间解f′(x)>0(或f′(x)<0)即可.含参数的函数单调性求参数取值一般转化为恒成立问题。[例2](1)(2012年高考山东卷改编)已知函数f(x)=(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间.[解析](1)由f(x)=,得f′(x)=,x∈(0,+∞).由于曲线y=f(x)在(1,f(1))处的切线与x轴平行,所以f′(1)=0,因此k=1.(2)由(1)得f′(x)=,x∈(0,+∞).令h(x)=1-x-xlnx,x∈(0,+∞),当x∈(0,1)时...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学二轮专题 导数运用解析

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部