开卷速查(六十二)排列与组合A级基础巩固练1.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张。从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A.232B.252C.472D.484解析:由题意可知,抽取的三张卡片可以分为两类,一类为不含红色的卡片,一类是含一张红色的卡片,第一类抽取法的种数为C-3C=208,第二类抽取法的种数为C·C=264,故而总的种数为208+264=472。答案:C2.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种解析:因为2名教师和4名学生按要求分成两组共有CC种分法,再分到甲、乙两地有CCA=12(种),所以选A。答案:A3.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A.10种B.15种C.20种D.30种解析:分三种情况:恰好打3局,有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C=6(种)情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C=12(种)情形。所有可能出现的情形共有2+6+12=20(种)。答案:C4.新学期开始,某校接受6名师大毕业生到校学习,学校要把他们分配到三个年级,每个年级2人,其中甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为()A.18B.15C.12D.9解析:先安排高三年级,从除甲、乙、丙的3人中选2人,有C种选法;再安排高一年级,有C种方法,最后安排高二年级,有C种方法,由分步乘法计数原理,得共有CCC=9(种)安排方法。答案:D5.三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为凹数,如524,746等都是凹数,那么,各个数位上无重复数字的三位凹数有()A.72个B.120个C.240个D.360个解析:从0~9这10个数字中任选3个,有C种,这三个数字组成的凹数有A个,故共有CA=240(个)。答案:C6.用数字0,1,2,3组成数字可以重复的四位数,其中有且只有一个数字出现两次的四位数的个数为()A.144B.120C.108D.72解析:若四位数中不含0,则有CCA=36(种);若四位数中含有一个0,则有CCCA=54(种);若四位数中含有两个0,则有CA=18(种),∴共有36+54+18=108(种),选C。答案:C7.某工厂将甲、乙等五名新招聘员工分配到三个不同的车间,每个车间至少分配一名员工,且甲、乙两名员工必须分到同一个车间,则不同分法的种数为__________。解析:若甲、乙分到的车间不再分人,则分法有C×A×C=18(种);若甲、乙分到的车间再分一人,则分法有3×A×C=18(种)。所以满足题意的分法共有18+18=36(种)。答案:368.从5名外语系大学生中选派4名同学参加广州亚运会翻译、交通、礼仪三项义工活动,要求翻译有两人参加,交通和礼仪各有1人参加,则不同的选派方法共有__________种。解析:本题可分三步完成。第一步:先从5人中选出2名翻译,共C种选法,第二步:从剩余3人中选1名交通义工,共C种选法,第三步:从剩余两人中选1名礼仪义工,共C种选法,所以不同的选派方法共有CCC=60(种)。答案:609.有一个不规则的六面体盒子(六个面大小不同),现要用红、黄、蓝三种颜色刷盒子的六个面,其中一种颜色刷3个面,一种颜色刷两个面,一种颜色刷1个面,则刷这个六面体盒子的刷法有__________种。解析:可先分组后分配,即将6个面分成3,2,1三组共有CCC种分组方法,然后每一组用三种颜色去刷,各有A种,由分步计数原理可知共有CCC·A=360(种)刷法。答案:36010.用数字0,1,2,3,4,5组成没有重复数字的数:(1)能组成多少个五位数?(2)能组成多少个正整数?(3)能组成多少个六位奇数?(4)能组成多少个能被25整除的四位数?解析:(1)因为万位上数字不能是0,所以万位数字的选法有A种,其余四位上的排法有A种,所以共可组成AA=600(个)五位数。(2)组成的正整数,可以是一位、两位、三位、四位、五位、六位数,相应的排法种数依次为A,AA,AA,AA,AA,AA,所以可组成A+AA+AA+AA+AA+AA=1630(个)正整数。(3)首位与个位的位置是特殊位置,0,1,3,5是特殊元素,先选...