第2课命题及逻辑联结词【考点导读】1.了解命题的逆命题,否命题与逆否命题的意义;会分析四种命题的相互关系.2.了解逻辑联结词“或”,“且”,“非”的含义;能用“或”,“且”,“非”表述相关的数学内容.3.理解全称量词与存在量词的意义;能用全称量词与存在量词叙述简单的数学内容.理解对含有一个量词的命题的否定的意义;能正确地对含有一个量词的命题进行否定.【基础练习】1.下列语句中:①230x;②你是高三的学生吗?③315;④536x.其中,不是命题的有____①②④_____.2.一般地若用p和q分别表示原命题的条件和结论,则它的逆命题可表示为若q则p,否命题可表示为pq若则,逆否命题可表示为qp若则;原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.3.有下列命题:①对角线不垂直的平行四边形不是菱形;②“若0xy,则0xy”的逆命题;③“若0x,则20x”的否命题;④“若方程20axbxc有两个不相等的实根,则0ac”的逆否命题.其中真命题的序号有____①③____.4.有下列命题:①2,2340xRxx;②{1,0,1},210xx;③2,xNxx使;④*,29xNx使为的约数.其中真命题的序号有___①③④___.5.对原命题及其逆命题,否命题,逆否命题这四个命题而言,假命题的个数是____0或2或4___.6.命题“若0ab,则a,b至少有一个为零”的逆否命题是.【范例解析】例1.写出下列命题的逆命题,否命题,逆否命题并判断真假.(1)平行四边形的对边相等;(2)菱形的对角线互相垂直平分;(3)设,,,abcdR,若,abcd,则acbd.分析:先将原命题改为“若p则q”,在写出其它三种命题.解:(1)原命题:若一个四边形是平行四边形,则其两组对边相等;真命题;逆命题:若一个四边形的两组对边相等,则这个四边形是平行四边形;真命题;否命题:若一个四边形不是平行四边形,则其两组对边至少一组不相等;真命题;逆否命题:若一个四边形的两组对边至少一组不相等,则这个四边形不是平行四边形;真命题.(2)原命题:若一个四边形是菱形,则其对角线互相垂直平分;真命题;若且,则逆命题:若一个四边形的对角线互相垂直平分,则这个四边形是菱形;真命题;否命题:若一个四边形不是菱形,则其对角线不垂直或不平分;真命题;逆否命题:若一个四边形的对角线不垂直或不平分,则这个四边形不是菱形;真命题.(3)原命题:设,,,abcdR,若,abcd,则acbd;真命题;逆命题:设,,,abcdR,若acbd,则,abcd;假命题;否命题:设,,,abcdR,若ab或cd,则acbd;假命题;逆否命题:设,,,abcdR,若acbd,则ab或cd;真命题.点评:已知原命题写出其它的三种命题首先应把命题写成“若p则q”的形式,找出其条件p和结论q,再根据四种命题的定义写出其它命题;对于含大前提的命题,在改写命题时大前提不要动;在写命题p的否定即p时,要注意对p中的关键词的否定,如“且”的否定为“或”,“或”的否定为“且”,“都是”的否定为“不都是”等.例2.写出由下列各组命题构成的“p或q”,“p且q”,“非p”形式的命题,并判断真假.(1)p:2是4的约数,q:2是6的约数;(2)p:矩形的对角线相等,q:矩形的对角线互相平分;(3)p:方程210xx的两实根的符号相同,q:方程210xx的两实根的绝对值相等.分析:先写出三种形式命题,根据真值表判断真假.解:(1)p或q:2是4的约数或2是6的约数,真命题;p且q:2是4的约数且2是6的约数,真命题;非p:2不是4的约数,假命题.(2)p或q:矩形的对角线相等或互相平分,真命题;p且q:矩形的对角线相等且互相平分,真命题;非p:矩形的对角线不相等,假命题.(3)p或q:方程210xx的两实根的符号相同或绝对值相等,假命题;p且q:方程210xx的两实根的符号相同且绝对值相等,假命题;非p:方程210xx的两实根的符号不同,真命题.点评:判断含有逻辑联结词“或”,“且”,“非”的命题的真假,先要把结构弄清楚,确定命题构成的形式以及构成它们的命题p,q的真假然后根据真值表判断构成新命题的真假.例3.写出下列命题...