第103课时:第十三章导数——导数小结课题:导数小结一.课前预习:1.设函数()fx在0xx处有导数,且1)()2(lim000xxfxxfx,则0()fx(C)()A1()B0()C2()D212.设()fx是函数()fx的导函数,()yfx的图象如下图(1)所示,则()yfx的图象最有可能的是(D)()A()B()C()D3.若曲线3yxpxq与x轴相切,则,pq之间的关系满足(A)()A22()()032pq()B23()()023pq()C2230pq()D2230qp4.已知函数23()2fxaxx的最大值不大于16,又当11[,]42x时,1()8fx,则a1.5.若对任意3,()4,(1)1xRfxxf,则()fx42x.四.例题分析:例1.若函数3211()(1)132fxxaxax在区间(1,4)内为减函数,在区间(6,)上为增函数,试求实数a的取值范围.解:2()1(1)[(1)]fxxaxaxxa,令()0fx得1x或1xa,∴当(1,4)x时,()0fx,当(6,)x时,()0fx,∴416a,∴57a.用心爱心专心1(1)例2.已知函数3()fxaxcxd(0)a是R上的奇函数,当1x时()fx取得极值2,(1)求()fx的单调区间和极大值;(2)证明对任意12,(1,1)xx,不等式12|()()|4fxfx恒成立.解:(1)由奇函数的定义,应有)()(xfxf,Rx,即dcxaxdcxax33,∴0d,∴cxaxxf3)(,∴caxxf23)(,由条件2)1(f为)(xf的极值,必有0)1(f,故032caca,解得1a,3c,∴xxxf3)(3,)1)(1(333)(2xxxxf,∴0)1()1(ff,当)1,(x时,0)(xf,故)(xf在单调区间)1,(上是增函数;当)1,1(x时,0)(xf,故)(xf在单调区间)1,1(上是减函数;当),1(x时,0)(xf,故)(xf在单调区间),1(上是增函数,所以,)(xf在1x处取得极大值,极大值为2)1(f.(2)由(1)知,xxxf3)(3)]1,1[(x是减函数,且)(xf在]1,1[上的最大值2)1(fM,最小值2)1(fm,所以,对任意的1x,)1,1(2x,恒有4)2(2)()(21mMxfxf.例3.设函数321()532abfxxxx(,,0)abRa的定义域为R,当1xx时,取得极大值;当2xx时取得极小值,1||2x且12||4xx.(1)求证:120xx;(2)求证:22(1)164baa;(3)求实数b的取值范围.(1)证明:2()(1)1fxaxbx,由题意,2()(1)10fxaxbx的两根为12,xx,∴1210xxa.用心爱心专心2(2)212(1)4||4baxxa,∴22(1)164baa.(3)①若102x,则10(2)4210bfab,∴412(1)ab,从而222(41)4(1)4(164)abaa,解得112a或14a(舍)∴42(1)3b,得13b.②若120x,则10(2)4230bfab,∴412(1)ab,从而222(41)4(1)4(164)abaa,解得112a或14a(舍)∴42(1)3b,∴53b,综上可得,b的取值范围是15(,)(,)33.小结:本题主要考查导数、函数、不等式等基础知识,综合分析问题和解决问题的能力.五.课后作业:1.函数3223125yxxx在[0,3]上的最大值与最小值分别是()()A5、15()B5、4()C4、15()D5、162.关于函数762)(23xxxf,下列说法不正确的是()()A在区间(,0)内,)(xf为增函数()B在区间(0,2)内,)(xf为减函数()C在区间(2,)内,)(xf为增函数()D在区间(,0)(2,)内)(xf为增函数3.设)(xf在0xx处可导,且000(3)()lim1xfxxfxx,则)(0xf等于()()A1()B13()C3()D314.设对于任意的x,都有0)(),()(0kxfxfxf,则0()fx()用心爱心专心3()Ak()Bk()Ck1()Dk15.一物体运动方程是)/8.9(3120022smggts,则3t时物体的瞬时速度为.6.已知函数xbxaxxf3)(23在1x处取得极值.(1)讨论)1(f和)1(f是函数)(xf的极大值还是极小值;(2)过点)16,0(A作曲线)(xfy的切线,求此切线方程.7.某工厂生产某种产品,已知该产品的月产量x(吨)与每吨的价格P(元/吨)之间的关系为21242005Px,且生产x吨的成本为50000200Rx元,问:该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润收入成本)8.已知1,0bc,函数()fxxb的图象与函数2()gxxbxc的图象相切,(1)求,bc的关系式(用c表示b);(2)设函数()()()Fxfxgx在(,)内有极值点,求c的取值范围.用心爱心专心4