电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学一轮复习 第九章 平面解析几何 第四节 直线与圆、圆与圆的位置关系夯基提能作业本 文-人教版高三全册数学试题VIP免费

高三数学一轮复习 第九章 平面解析几何 第四节 直线与圆、圆与圆的位置关系夯基提能作业本 文-人教版高三全册数学试题_第1页
1/8
高三数学一轮复习 第九章 平面解析几何 第四节 直线与圆、圆与圆的位置关系夯基提能作业本 文-人教版高三全册数学试题_第2页
2/8
高三数学一轮复习 第九章 平面解析几何 第四节 直线与圆、圆与圆的位置关系夯基提能作业本 文-人教版高三全册数学试题_第3页
3/8
第四节直线与圆、圆与圆的位置关系A组基础题组1.直线l:x-y+1=0与圆C:x2+y2-4x-2y+1=0的位置关系是()A.相离B.相切C.相交且过圆心D.相交但不过圆心2.直线y=x+4与圆(x-a)2+(y-3)2=8相切,则a的值为()A.3B.2C.3或-5D.-3或53.(2014安徽,6,5分)过点P(-,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.B.C.D.4.直线l与圆x2+y2+2x-4y+a=0(a<3)相交于A,B两点,若弦AB的中点为(-2,3),则直线l的方程为()A.x+y-3=0B.x+y-1=0C.x-y+5=0D.x-y-5=05.过点P(1,)作圆O:x2+y2=1的两条切线,切点分别为A和B,则弦长|AB|=()A.B.2C.D.46.(2015重庆,12,5分)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为.7.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与圆(x-2)2+(y-3)2=8相外切,则圆C的方程为.8.圆x2+y2+2y-3=0被直线x+y-k=0分成两段圆弧,且较短弧长与较长弧长之比为1∶3,则k=.9.(2016天津南开中学模拟)在平面直角坐标系xOy中,圆C:x2+y2+4x-2y+m=0与直线x-y+-2=0相切.(1)求圆C的方程;(2)若圆C上有两点M,N关于直线x+2y=0对称,且|MN|=2,求直线MN的方程.10.(2014课标Ⅰ,20,12分)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.B组提升题组11.过点(-2,3)的直线l与圆x2+y2+2x-4y=0相交于A,B两点,则|AB|取得最小值时l的方程为()A.x-y+5=0B.x+y-1=0C.x-y-5=0D.2x+y+1=012.(2016重庆一中模拟)已知圆C:(x-1)2+(y-2)2=2.y轴被圆C截得的弦长与直线y=2x+b被圆C截得的弦长相等,则b=()A.-B.±C.-D.±13.(2016辽宁抚顺二模)已知直线l:kx+y-2=0(k∈R)是圆C:x2+y2-6x+2y+9=0的对称轴,过点A(0,k)作圆C的一条切线,切点为B,则线段AB的长为()A.2B.2C.3D.214.(2016山东,7,5分)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2.则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离15.(2014课标Ⅱ,16,5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.16.(2016江苏,18,16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.答案全解全析A组基础题组1.D将圆C的方程化为标准方程得C:(x-2)2+(y-1)2=4,圆心为(2,1),半径为2,圆心到直线l的距离为=<2,所以直线l与圆相交.又圆心不在直线l上,所以直线不过圆心.故选D.2.C解法一:联立消去y可得,2x2-(2a-2)x+a2-7=0,则由题意可得Δ=[-(2a-2)]2-4×2×(a2-7)=0,整理可得a2+2a-15=0,解得a=3或-5.解法二:(x-a)2+(y-3)2=8的圆心为(a,3),半径为2,由直线y=x+4与圆(x-a)2+(y-3)2=8相切,知圆心到直线的距离等于半径,即=2,即|a+1|=4,解得a=3或-5.3.D过P点作圆的切线PA、PB,连接OP,如图所示.显然,直线PA的倾斜角为0,又OP==2,PA=,OA=1,因此∠OAP=,∠OPA=,由对称性知,直线PB的倾斜角为.若直线l与圆有公共点,由图形知其倾斜角的取值范围是.故选D.4.C由题意知直线l的斜率存在,设直线l的斜率为k,又弦AB的中点为(-2,3),所以直线l的方程为y-3=k(x+2),即kx-y+2k+3=0,由x2+y2+2x-4y+a=0得圆的圆心坐标为(-1,2),所以圆心到直线的距离为,所以=,解得k=1,所以直线l的方程为x-y+5=0.5.A如图所示, PA、PB分别为圆O:x2+y2=1的切线,∴OA⊥AP. P(1,),O(0,0),∴|OP|==2.又 在Rt△APO中,|OA|=1,cos∠AOP=,∴∠AOP=60°,∴|AB|=2|OA|sin∠AOP=.6.答案x+2y-5=0解析设圆的方程为x2+y2=r2,将P的坐标代入圆的方程,得r2=5,故圆的方程为x2+y2=5.设该圆在点P处的切线上的任意一点为M(x,y),则=(x-1,y-2).由⊥(O为坐标原点),得·=0,即1×(x-1)+2×(y-2)=0,即x+2y-5=0.7.答案(x+1)2+y2=2解析设圆C的半径为R.由题意知圆心C(-1,0),其与已知圆圆心(2,3)的距离d=3,由两圆相外切可得R+2=d=3,R=,故圆C的标准方程为(x+1)2+y2=2.8.答案1或-3解析由题意知,圆的标准方程为x2+(y+1)2=4.较短弧所对圆心角是90°,所以圆心...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学一轮复习 第九章 平面解析几何 第四节 直线与圆、圆与圆的位置关系夯基提能作业本 文-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部