电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学一轮复习 第九章 平面解析几何 第五节 椭圆夯基提能作业本 理-人教版高三全册数学试题VIP免费

高三数学一轮复习 第九章 平面解析几何 第五节 椭圆夯基提能作业本 理-人教版高三全册数学试题_第1页
1/8
高三数学一轮复习 第九章 平面解析几何 第五节 椭圆夯基提能作业本 理-人教版高三全册数学试题_第2页
2/8
高三数学一轮复习 第九章 平面解析几何 第五节 椭圆夯基提能作业本 理-人教版高三全册数学试题_第3页
3/8
第五节椭圆A组基础题组1.已知方程+=1表示焦点在y轴上的椭圆,则实数k的取值范围是()A.B.(1,+∞)C.(1,2)D.2.(2017黑龙江齐齐哈尔一中期末)已知椭圆的焦点在x轴上,离心率为,直线x+y-4=0与y轴的交点为椭圆的一个顶点,则椭圆的方程为()A.+=1B.+=1C.+=1D.+=13.矩形ABCD中,|AB|=4,|BC|=3,则以A,B为焦点,且过C,D两点的椭圆的短轴的长为()A.2B.2C.4D.44.设椭圆+=1的焦点为F1,F2,点P在椭圆上,若△PF1F2是直角三角形,则△PF1F2的面积为()A.3B.3或C.D.6或35.已知椭圆+=1(0b>0),F1,F2分别为椭圆的左,右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.(1)若∠F1AB=90°,求椭圆的离心率;(2)若=2,·=,求椭圆的方程.B组提升题组11.已知椭圆C:+=1的左,右焦点分别为F1,F2,椭圆C上的点A满足AF2⊥F1F2.若点P是椭圆C上的动点,则·的最大值为()A.B.C.D.212.如图,已知椭圆C的中心为原点O,F(-2,0)为C的左焦点,P为C上一点,满足|OP|=|OF|,且|PF|=4,则椭圆C的方程为()A.+=1B.+=1C.+=1D.+=113.(2016江苏,10,5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.14.设F1,F2分别是椭圆C:+=1(a>b>0)的左,右焦点,点P在椭圆C上,线段PF1的中点在y轴上,若∠PF1F2=30°,则椭圆C的离心率为.15.(2016云南检测)已知焦点在y轴上的椭圆E的中心是原点O,离心率等于,以椭圆E的长轴和短轴为对角线的四边形的周长为4.直线l:y=kx+m与y轴交于点P,与椭圆E相交于A、B两个点.(1)求椭圆E的方程;(2)若=3,求m2的取值范围.3答案全解全析A组基础题组1.C 方程+=1表示焦点在y轴上的椭圆,所以解得故k的取值范围为(1,2).2.C设椭圆的方程为+=1(a>b>0),由题意知解得所以椭圆的方程为+=1.3.D依题意得|AC|=5,椭圆的焦距2c=|AB|=4,长轴长2a=|AC|+|BC|=8,所以短轴长2b=2=2=4.4.C由椭圆的方程知a=2,b=,c=1,当点P为短轴端点(0,)时,∠F1PF2=,△PF1F2是正三角形,若△PF1F2是直角三角形,则直角顶点不可能是点P,只能是焦点F1(或F2),此时|PF1|==,=××2=.故选C.5.D由椭圆的方程可知a=2,由椭圆的定义可知,|AF2|+|BF2|+|AB|=4a=8,所以|AB|=8-(|AF2|+|BF2|)≥3,由椭圆的性质可知,过椭圆焦点的弦中,垂直于焦点所在坐标轴的弦最短,则=3.所以b2=3,即b=.6.答案+=1解析由题意设椭圆的标准方程为+=1(a>b>0).由离心率e=可得a2=5c2,所以b2=4c2,故椭圆的方程为+=1,将P(-5,4)代入可得c2=9,故椭圆的方程为+=1.47.答案+=1解析设椭圆C的方程为+=1(a>b>0).由题意知解得a2=16,b2=12.所以椭圆C的方程为+=1.8.答案120°解析由椭圆定义知,|PF2|=2,|F1F2|=2×=2.在△PF1F2中,由余弦定理,得cos∠F1PF2===-,∴∠F1PF2=120°.9.解析(1)设椭圆方程为+=1(a>b>0),由题意知c=,=,所以a=2,则b=1,所求椭圆方程为+y2=1.(2)由消去y,得5x2+8mx+4(m2-1)=0,则Δ=64m2-4×5×4(m2-1)>0,整理,得m2<5(*).设P(x1,y1),Q(x2,y2),则x1+x2=-,x1x2=,y1-y2=x1-x2,|PQ|==2.解得m=±,满足(*),所以m=±.10.解析(1)∠F1AB=90°,则△AOF2为等腰直角三角形,所以有OA=OF2,即b=c.所以a=c,所以e==.5(2)由题知A(0,b),F1(-c,0),F2(c,0),其中c=,设B(x,y).由=2,得(c,-b)=2(x-c,y),解得x=,y=-,即B.将B点坐标代入+=1,得+=1,即+=1,解得a2=3c2①.又由·=(-c,-b)·=,得b2-c2=1,即a2-2c2=1②.由①②解得c2=1,a2=3,从而有b2=2.所以椭圆的方程为+=1.B组提升题组11.B由椭圆方程知c==1,所以F1(-1,0),F2(1,0),因为椭圆C上的点A满足AF2⊥F1F2,所以可设A(1,y0),代入椭圆方程可得=,所以y0=±.设P(x1,y1),则=(x1+1,y1),又=(0,y0),所以·=y1y0,因为点P...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学一轮复习 第九章 平面解析几何 第五节 椭圆夯基提能作业本 理-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部