电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学一轮复习 第九章 平面解析几何 第七节 抛物线夯基提能作业本 理-人教版高三全册数学试题VIP免费

高三数学一轮复习 第九章 平面解析几何 第七节 抛物线夯基提能作业本 理-人教版高三全册数学试题_第1页
1/10
高三数学一轮复习 第九章 平面解析几何 第七节 抛物线夯基提能作业本 理-人教版高三全册数学试题_第2页
2/10
高三数学一轮复习 第九章 平面解析几何 第七节 抛物线夯基提能作业本 理-人教版高三全册数学试题_第3页
3/10
第七节抛物线A组基础题组1.抛物线y=4ax2(a≠0)的焦点坐标是()A.(0,a)B.(a,0)C.D.2.(2016课标全国Ⅱ,5,5分)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=()A.B.1C.D.23.(2016山西高三考前质检)已知抛物线C1:x2=2py(p>0)的准线与抛物线C2:x2=-2py(p>0)交于A,B两点,C1的焦点为F,若△FAB的面积等于1,则C1的方程是()A.x2=2yB.x2=yC.x2=yD.x2=y4.已知抛物线y2=2px(p>0),过其焦点且斜率为-1的直线交抛物线于A,B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为()A.x=1B.x=2C.x=-1D.x=-25.已知P为抛物线y=x2上的动点,点P在x轴上的射影为点M,点A的坐标为,则|PM|+|PA|的最小值是()A.8B.C.10D.6.(2015陕西,14,5分)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p=.7.已知点P在抛物线y2=4x上,且点P到y轴的距离与其到焦点的距离之比为,则点P到x轴的距离为.8.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽米.9.如图所示,已知抛物线C:y2=4x的焦点为F,直线l经过点F且与抛物线C相交于A、B两点.(1)若线段AB的中点在直线y=2上,求直线l的方程;(2)若线段|AB|=20,求直线l的方程.10.(2016陕西商洛月考)在平面直角坐标系xOy中,抛物线y2=2px(p>0)的焦点为F,点A(4,m)在抛物线上,且|AF|=5.(1)求抛物线的标准方程;(2)是否存在直线l,使l过点(0,1),并与抛物线交于B,C两点,且满足·=0?若存在,求出直线l的方程;若不存在,说明理由.B组提升题组11.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若=4,则|QF|=()A.B.3C.D.212.过抛物线x2=4y的焦点F作直线AB,CD与抛物线交于A,B,C,D四点,且AB⊥CD,则·+·的最大值等于()A.-4B.-16C.4D.-813.设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x-1或y=-x+1B.y=(x-1)或y=-(x-1)C.y=(x-1)或y=-(x-1)D.y=(x-1)或y=-(x-1)14.(2016天津,14,5分)设抛物线(t为参数,p>0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C,AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为3,则p的值为.15.(2016广东深圳一模)过抛物线y2=2px(p>0)的焦点F,且倾斜角为的直线与抛物线交于A,B两点,若弦AB的垂直平分线经过点(0,2),则p等于.16.已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x10)得k=1×2=2,故选D.3.A由题意得F,不妨设A,B,∴S△FAB=·2p·p=1,则p=1,即抛物线C1的方程是x2=2y,故选A.4.C由题可知焦点为,∴直线AB的方程为y=-,与抛物线方程联立得消去y,得4x2-12px+p2=0,设A(x1,y1),B(x2,y2),则x1+x2=3p. 线段AB的中点的横坐标为3,∴=3,∴p=2,∴抛物线的准线方程为x=-1.5.B依题意可知焦点为F,准线方程为y=-,延长PM交准线于点H(图略).则|PF|=|PH|,|PM|=|PF|-,|PM|+|PA|=|PF|+|PA|-.因为|PF|+|PA|≥|FA|,又|FA|==10.所以|PM|+|PA|≥10-=,故选B.6.答案2解析抛物线y2=2px(p>0)的准线方程为x=-(p>0),故直线x=-过双曲线x2-y2=1的左焦点(-,0),从而-=-,解得p=2.7.答案2解析设点P的坐标为(xP,yP).抛物线y2=4x的准线方程为x=-1,根据已知条件及抛物线的定义,可知=x⇒P=1,∴=4,∴|yP|=2.则点P到x轴的距离为2.8.答案2解析建立坐标系如图所示.则可设抛物线方程为x2=-2py(p>0). 点(2,-2)在抛物线上,∴p=1,即抛物线方程为x2=-2y.当y=-3时,x=±.∴水位下降1米后,水面宽2米.9.解析(1)由已知得抛物线的焦点为F(1,0).因为线段AB的中点在直线y=2上,所以直线l的斜率存在,设直线l的斜率为k,A(x1,y1),B(x2,y2),AB的中点为M(x0,y0),则由得(y1+y2)(y1-y2)=4(x1-x2),所以2y0k=4.又y0=2,所以k=1,故直线l的方程是y=x-1.(2)设直线l的方程为x=my+1,与抛物线方程联立得消去x,整理得y2-4my-4=0,所以y1+y2=4m,y1y2=-4,Δ=16(m2+1)>0.|AB|=|y1-y2|=·=·=4(m2+1).所以4(m2+1)=20,解得m=±2,所以直线l的方程是x=±2y+1,即x±2y-1=0...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学一轮复习 第九章 平面解析几何 第七节 抛物线夯基提能作业本 理-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部