电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

第三章 导数及其应用(09年9月最新更新)VIP免费

第三章 导数及其应用(09年9月最新更新)_第1页
1/58
第三章 导数及其应用(09年9月最新更新)_第2页
2/58
第三章 导数及其应用(09年9月最新更新)_第3页
3/58
第三章导数及其应用第一部分五年高考荟萃2009年高考题一、选择题1.(2009年广东卷文)函数xexxf)3()(的单调递增区间是()A.)2,(B.(0,3)C.(1,4)D.),2(答案D解析()(3)(3)(2)xxxfxxexexe,令()0fx,解得2x,故选D2.(2009全国卷Ⅰ理)已知直线y=x+1与曲线yln()xa相切,则α的值为()A.1B.2C.-1D.-2答案B解:设切点00(,)Pxy,则0000ln1,()yxayx,又0'01|1xxyxa00010,12xayxa.故答案选B3.(2009安徽卷理)已知函数()fx在R上满足2()2(2)88fxfxxx,则曲线()yfx在点(1,(1))f处的切线方程是()A.21yxB.yxC.32yxD.23yx答案A解析由2()2(2)88fxfxxx得几何2(2)2()(2)8(2)8fxfxxx,即22()(2)44fxfxxx,∴2()fxx∴/()2fxx,∴切线方程12(1)yx,即210xy选A4.(2009江西卷文)若存在过点(1,0)的直线与曲线3yx和21594yaxx都相切,则a等于()用心爱心专心A.1或25-64B.1或214C.74或25-64D.74或7答案A解析设过(1,0)的直线与3yx相切于点300(,)xx,所以切线方程为320003()yxxxx即230032yxxx,又(1,0)在切线上,则00x或032x,当00x时,由0y与21594yaxx相切可得2564a,当032x时,由272744yx与21594yaxx相切可得1a,所以选A.5.(2009江西卷理)设函数2()()fxgxx,曲线()ygx在点(1,(1))g处的切线方程为21yx,则曲线()yfx在点(1,(1))f处切线的斜率为()A.4B.14C.2D.12答案A解析由已知(1)2g,而()()2fxgxx,所以(1)(1)214fg故选A力。6.(2009全国卷Ⅱ理)曲线21xyx在点1,1处的切线方程为()A.20xyB.20xyC.450xyD.450xy答案B解111222121||[]|1(21)(21)xxxxxyxx,故切线方程为1(1)yx,即20xy故选B.7.(2009湖南卷文)若函数()yfx的导函数在区间[,]ab上是增函数,则函数()yfx在区间[,]ab上的图象可能是()用心爱心专心A.B.C.D.解析因为函数()yfx的导函数()yfx在区间[,]ab上是增函数,即在区间[,]ab上各点处的斜率k是递增的,由图易知选A.注意C中yk为常数噢.8.(2009辽宁卷理)若1x满足2x+2x=5,2x满足2x+22log(x-1)=5,1x+2x=()A.52B.3C.72D.4答案C解析由题意11225xx①22222log(1)5xx②所以11252xx,121log(52)xx即21212log(52)xx令2x1=7-2t,代入上式得7-2t=2log2(2t-2)=2+2log2(t-1)∴5-2t=2log2(t-1)与②式比较得t=x2于是2x1=7-2x29.(2009天津卷理)设函数1()ln(0),3fxxxx则()yfx()A在区间1(,1),(1,)ee内均有零点。B在区间1(,1),(1,)ee内均无零点。C在区间1(,1)e内有零点,在区间(1,)e内无零点。D在区间1(,1)e内无零点,在区间(1,)e内有零点。【考点定位】本小考查导数的应用,基础题。解析由题得xxxxf33131)`(,令0)`(xf得3x;令0)`(xf得30x;0)`(xf得3x,故知函数)(xf在区间)3,0(上为减函数,在区间用心爱心专心ababaoxoxybaoxyoxyby),3(为增函数,在点3x处有极小值03ln1;又0131)1(,013,31)1(eefeeff,故选择D。二、填空题10.(2009辽宁卷文)若函数2()1xafxx在1x处取极值,则a解析f’(x)=222(1)()(1)xxxaxf’(1)=34a=0a=3答案311.若曲线2fxaxInx存在垂直于y轴的切线,则实数a的取值范围是.解析解析由题意该函数的定义域0x,由12fxaxx。因为存在垂直于y轴的切线,故此时斜率为0,问题转化为0x范围内导函数12fxaxx存在零点。解法1(图像法)再将之转化为2gxax与1hxx存在交点。当0a不符合题意,当0a时,如图1,数形结合可得显然没有交点,当0a如图2,此时正好有一个交点,故有0a应填,0或是|0aa。用心爱心专心解法2(分离变量法)上述也可等价于方程120axx在0,内有解,显然可得21,02ax12.(2009江苏卷)函数32()...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

第三章 导数及其应用(09年9月最新更新)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部