2015-2016学年安徽省马鞍山二中、安师大附中、淮北一中、铜陵一中高三(上)第三次联考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填在答题卷的相应位置.1.集合M={y|y=lg(x2+1)},N={x|4x<4},则M∩N等于()A.[0,+∞)B.[0,1)C.(1,+∞)D.(0,1]2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+iD.﹣4﹣i3.角θ的终边与单位圆的交点的横坐标为,则tanθ的值为()A.B.±1C.D.4.若x,y满足约束条件,且向量=(3,2),=(x,y),则•的取值范围()A.[,5]B.[,5]C.[,4]D.[,4]5.已知函数f(x)=sin2x+2cos2x﹣1,将f(x)的图象上各点的横坐标缩短为原来,纵坐标不变,再将所得图象向右平移个单位,得到函数y=g(x)的图象,则函数y=g(x)的解析式为()A.B.C.D.6.已知各项均为正数的等比数列{an}中,3a1,成等差数列,则=()A.27B.3C.﹣1或3D.1或277.在△ABC中,“=0”是“△ABC是直角三角形”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件8.已知等差数列{an}和等比数列{bn}各项都是正数,且a1=b1,a11=b11那么一定有()A.a6≥b6B.a6≤b6C.a12≥b12D.a12≤b129.定义在区间[a,b](b>a)上的函数的值域是,则b﹣a的最大值M和最小值m分别是()A.B.C.D.10.函数f(x)=(x2﹣2x)ex的图象大致是()A.B.C.D.11.如图,,,,,若m=,那么n=()A.B.C.D.12.设f(x)的定义域为D,若f(x)满足下面两个条件,则称f(x)为闭函数.①f(x)在D内是单调函数;②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b].如果为闭函数,那么k的取值范围是()A.﹣1<k≤B.≤k<1C.k>﹣1D.k<1二、填空题:本大题共4小题,每小题5分,满分20分.请把答案填在答题卷的相应位置.13.设函数f(x)=,若函数g(x)=f(x)﹣ax,x∈[﹣2,2]为偶函数,则实数a的值为.14.已知函数则=.15.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则b的值为.16.函数f(x)=ax﹣x2(a>1)有三个不同的零点,则实数a的取值范围是.三、解答题,本大题共5小题,满分60分.解答须写出文字说明、证明过穆和演算步骤.17.在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.18.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点.(Ⅰ)试证:AB⊥平面BEF;(Ⅱ)设PA=k•AB,且二面角E﹣BD﹣C的平面角大于45°,求k的取值范围.19.如图,在P地正西方向8km的A处和正东方向1km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE和PF,设∠EPA=α(0<α<).(1)为减少对周边区域的影响,试确定E,F的位置,使△PAE与△PFB的面积之和最小;(2)为节省建设成本,试确定E,F的位置,使PE+PF的值最小.20.设fk(n)为关于n的k(k∈N)次多项式.数列{an}的首项a1=1,前n项和为Sn.对于任意的正整数n,an+Sn=fk(n)都成立.(I)若k=0,求证:数列{an}是等比数列;(Ⅱ)试确定所有的自然数k,使得数列{an}能成等差数列.21.设函数f(x)=(x+1)lnx﹣a(x﹣1)在x=e处的切线与y轴相交于点(0,2﹣e).(1)求a的值;(2)函数f(x)能否在x=1处取得极值?若能取得,求此极值;若不能,请说明理由.(3)当1<x<2时,试比较与大小.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答时用2B铅笔在答题卡上把所选题目的题号涂黑,(本小题满分10分)选修4-1:几何证明选讲.22.已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.(Ⅰ)求证:AC平分∠BAD;(Ⅱ)求BC的长.选修4-4:坐标系与参数方程.23.在平面直角坐标系xOy中,已知C1:(θ为...