天津培英学校高三数学同步套练——排列、组合1.在这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有(A)36个(B)24个(C)18个(D)6个解:依题意,所选的三位数字有两种情况:(1)3个数字都是奇数,有种方法(2)3个数字中有一个是奇数,有,故共有+=24种方法,故选B2.6人排成一排,如果甲与乙之间恰有两人,则不同的排法种数为(A)A.144B.120C.96D.483.从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有(A)108种(B)186种(C)216种(D)270种解析:从全部方案中减去只选派男生的方案数,合理的选派方案共有=186种,选B.4.用0、1、2、3、4、5组成没有重复数字的四位数,将这些数从小到大排列,则2013是其中第(D)(A)11个(B)21个(C)60个(D)61个5.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有A.56个B.57个C.58个D.60个6.设有编号为1,2,3,4,5的五个茶杯和编号为1,2,3,4,5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有(B)A.30种B.31种C.32种D.36种7.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有(D)(A)140种(B)120种(C)35种(D)34种8.某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为(B)(A)(B)(C)(D)9.在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是A.6B.12C.18D.24解析:先排列1,2,3,有种排法,再将“+”,“-”两个符号插入,有种方法,共有12种方法,选B.10.5人排成一排,甲必须站第一、二个位置,乙必须站第二、三个位置,则不同的排法有(B)A.12种B.18种C.24种D.30种11.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为(A)(A)(B)(C)(D)12.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有(A)150种(B)180种(C)200种(D)280种解:人数分配上有1,2,2与1,1,3两种方式,若是1,2,2,则有=60种,若是1,1,3,则有=90种,所以共有150种,选A13.将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有(A)30种(B)90种(C)180种(D)270种解析:将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5名教师分成三组,一组1人,另两组都是2人,有种方法,再将3组分到3个班,共有种不同的分配方案,选B.14.从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有(B)A.300种B.240种C.144种D.96种15.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是(D)A.168B.96C.72D.14416.4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是(B)A.48B.36C.24D.1817.四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(B)(A)96(B)48(C)24(D)018.将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为(A)A.70B.140C.280D.84019、用0、1、2、3、4、5、6七个数字组成没有重复数字的五位数,且奇数位数字是偶数,偶数位数字是奇数,这样的五位数共有C(A)36个(B)72个(C)109个(D)144个20、从5双不同的鞋中任取4只,其中至少有一双的选法共有C...