专题2等差数列与等比数列【三年高考】1.【2016高考江苏8】已知{}是等差数列,是其前项和.若,=10,则的值是.【答案】【解析】由得,因此【考点】等差数列的性质【名师点睛】本题考查等差数列的基本量,对于特殊数列,一般采取待定系数法,即列出关于首项及公差(比)的两个独立条件即可.为使问题易于解决,往往要利用等差数列相关性质,如及2.【2015江苏高考,20】设是各项为正数且公差为d的等差数列(1)证明:依次成等比数列;(2)是否存在,使得依次成等比数列,并说明理由;(3)是否存在及正整数,使得依次成等比数列,并说明理由.【解析】(1)证明:因为(,,)是同一个常数,所以,,,依次构成等比数列.(3)假设存在,及正整数,,使得,,,依次构成等比数列,则,且.分别在两个等式的两边同除以及,并令(,),则,且.将上述两个等式两边取对数,得,且.化简得,且.再将这两式相除,化简得().令,则.令,则.令,则.令,则.由,,知,,,在和上均单调.故只有唯一零点,即方程()只有唯一解,故假设不成立.所以不存在,及正整数,,使得,,,依次构成等比数列.3.【2014江苏,理7】在各项均为正数的等比数列中,若,,则的值是.【答案】4.【解析】设公比为,因为,则由得,,解得,所以.4.【2013江苏,理14】在正项等比数列{an}中,,a6+a7=3.则满足a1+a2+…+an>a1a2…an的最大正整数n的值为__________.【答案】12.5.【2016高考新课标1卷改编】已知等差数列前9项的和为27,,则.【答案】98【解析】试题分析:由已知,所以.考点:等差数列及其运算【名师点睛】我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.6.【2016年高考四川理数改编】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是.(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)【答案】2019年【解析】试题分析:设第年的研发投资资金为,,则,由题意,需,解得,故从2019年该公司全年的投入的研发资金超过200万.考点:等比数列的应用.【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作是等比数列的应用,解题时要注意把哪个作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可解得结论.7.【2016高考新课标1卷】设等比数列满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为.【答案】考点:等比数列及其应用【名师点睛】高考中数列客观题大多具有小、巧、活的特点,在解答时要注意方程思想及数列相关性质的应用,尽量避免小题大做.8.【2016高考天津理数】已知是各项均为正数的等差数列,公差为,对任意的是和的等差中项.(Ⅰ)设,求证:是等差数列;(Ⅱ)设,求证:【答案】(Ⅰ)详见解析(Ⅱ)详见解析【解析】试题分析:(Ⅰ)先根据等比中项定义得:,从而,因此根据等差数列定义可证:(Ⅱ)对数列不等式证明一般以算代证先利用分组求和化简,再利用裂项相消法求和,易得结论.考点:等差数列、等比中项、分组求和、裂项相消求和【名师点睛】分组转化法求和的常见类型(1)若an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求和法求{an}的前n项和.(2)通项公式为an=的数列,其中数列{bn},{cn}是等比数列或等差数列,可采用分组求和法求和.9.【2016高考新课标3理数】已知数列的前n项和,其中.(I)证明是等比数列,并求其通项公式;(II)若,求.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)首先利用公式,得到数列的递推公式,然后通过变换结合等比数列的定义可证;(Ⅱ)利用(Ⅰ)前项和化为的表达式,结合的值,建立方程可求得的值.(Ⅱ)由(Ⅰ)得,由得,即,解得.考点:1、数列通项与前项和为关系;2、等比数列的定义与通项及前项和为...