专题3数列的综合问题【三年高考】1.【2016高考江苏20】记,对数列和的子集,若,定义;若,定义.例如:时,.现设是公比为3的等比数列,且当时,.(1)求数列的通项公式;(2)对任意正整数,若,求证:;(3)设,求证:.【答案】(1)(2)详见解析(3)详见解析【解析】试题分析:(1)根据及时定义,列出等量关系,解出首项,写出通项公式;(2)根据子集关系,进行放缩,转化为等比数列求和;(3)利用等比数列和与项的大小关系,确定所定义和的大小关系:设,则因此由,因此中最大项必在A中,由(2)得.(3)下面分三种情况证明.①若是的子集,则.②若是的子集,则.③若不是的子集,且不是的子集.令,则,,.于是,,进而由,得.设是中的最大数,为中的最大数,则.由(2)知,,于是,所以,即.又,故,从而,故,所以,即.综合①②③得,.【考点】等比数列的通项公式、求和【名师点睛】本题有三个难点:一是数列新定义,利用新定义确定等比数列的首项,再代入等比数列通项公式求解;二是利用放缩法求证不等式,放缩的目的是将非特殊数列转化为特殊数列,从而可利用特殊数列的性质,以算代征;三是结论含义的应用,实质又是一个新定义,只不过是新定义的性质应用.2.【2014江苏,理20】设数列的前项和为.若对任意的正整数,总存在正整数,使得,则称是“数列”.(1)若数列的前项和为,证明:是“数列”.(2)设是等差数列,其首项,公差,若是“数列”,求的值;(3)证明:对任意的等差数列,总存在两个“数列”和,使得成立.【答案】(1)祥见解析;(2);(3)祥见解析.【解析】(1)首先,当时,,所以,所以对任意的,是数列中的项,因此数列是“数列”.(2)由题意,,数列是“数列”,则存在,使,,由于,又,则对一切正整数都成立,所以.(3)首先,若(是常数),则数列前项和为是数列中的第项,因此是“数列”,对任意的等差数列,(是公差),设,,则,而数列,都是“数列”,证毕.3.【2013江苏,理19】设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);(2)若{bn}是等差数列,证明:c=0.【答案】(1)详见解析.(2)详见解析.【解析】证明:由题设,.(1)由c=0,得.又因为b1,b2,b4成等比数列,所以=b1b4,即,化简得d2-2ad=0.因为d≠0,所以d=2a.因此,对于所有的m∈N*,有Sm=m2a.从而对于所有的k,n∈N*,有Snk=(nk)2a=n2k2a=n2Sk.(2)设数列{bn}的公差是d1,则bn=b1+(n-1)d1,即=b1+(n-1)d1,n∈N*,代入Sn的表达式,整理得,对于所有的n∈N*,有=c(d1-b1).令A=,B=b1-d1-a+,D=c(d1-b1),则对于所有的n∈N*,有An3+Bn2+cd1n=D.(*)在(*)式中分别取n=1,2,3,4,得A+B+cd1=8A+4B+2cd1=27A+9B+3cd1=64A+16B+4cd1,从而有由②,③得A=0,cd1=-5B,代入方程①,得B=0,从而cd1=0.即=0,b1-d1-a+=0,cd1=0.若d1=0,则由=0,得d=0,与题设矛盾,所以d1≠0.又因为cd1=0,所以c=0..4.【2016高考新课标2理数】为等差数列的前项和,且记,其中表示不超过的最大整数,如.(Ⅰ)求;(Ⅱ)求数列的前1000项和.【答案】(Ⅰ),,;(Ⅱ)1893.【解析】试题分析:(Ⅰ)先用等差数列的求和公式求公差,从而求得通项,再根据已知条件表示不超过的最大整数,求;(Ⅱ)对分类讨论,再用分段函数表示,再求数列的前1000项和.试题解析:(Ⅰ)设的公差为,据已知有,解得所以的通项公式为(Ⅱ)因为所以数列的前项和为考点:等差数列的的性质,前项和公式,对数的运算.【名师点睛】解答新颖性的数学题,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.5.【2016高考山东理数】已知数列的前n项和Sn=3n2+8n,是等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)令求数列的前n项和Tn.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)根据及等差数列的通项公式求解;(Ⅱ)根据(Ⅰ)知数列...