专题3解三角形【三年高考】1.【2016高考江苏,理15】在中,AC=6,(1)求AB的长;(2)求的值.【答案】(1);(2)(2)在中,,所以,于是又故因为,所以因此【考点】同角三角函数的基本关系、正余弦定理、两角和与差的正余弦公式【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先应从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数的基本关系、两角和与差的三角公式、二倍角公式、配角公式等,选用恰当的公式是解决三角问题的关键,同时应明确角的范围、开方时正负的取舍等.2.【2015江苏高考,15】(本小题满分14分)在中,已知.(1)求的长;(2)求的值.【答案】(1);(2)【解析】试题分析:(1)已知两边及夹角求第三边,应用余弦定理,可得的长,(2)利用(1)的结果,则由余弦定理先求出角C的余弦值,再根据平方关系及三角形角的范围求出角C的正弦值,最后利用二倍角公式求出的值.试题解析:(1)由余弦定理知,,所以.(2)由正弦定理知,,所以.因为,所以为锐角,则.因此.【考点定位】余弦定理,二倍角公式3.[2016高考新课标Ⅲ文数改编]在中,,边上的高等于,则()【答案】【解析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得.考点:正弦定理.【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.4.【2016高考山东文数改编】中,角A,B,C的对边分别是a,b,c,已知,则A=.【答案】考点:余弦定理【名师点睛】本题主要考查余弦定理的应用、三角函数的同角公式及诱导公式,是高考常考知识内容.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.5.【2016高考新课标2文数】△ABC的内角A,B,C的对边分别为a,b,c,若,,a=1,则b=____________.【答案】【解析】试题分析:因为,且为三角形内角,所以,,又因为,所以.考点:正弦定理,三角函数和差公式.【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.6.【2016高考北京文数】在△ABC中,,,则=_________.【答案】1考点:解三角形【名师点睛】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.7.【2016高考四川文科】(本题满分12分)在△ABC中,角A,B,C所对的边分别是a,b,c,且.(I)证明:;(II)若,求.【答案】(Ⅰ)证明详见解析;(Ⅱ)4.【解析】试题分析:(Ⅰ)已知条件式中有边有角,利用正弦定理,将边角进行转化(本小题是将边转化为角),结合诱导公式进行证明;(Ⅱ)从已知式可以看出首先利用余弦定理解出cosA=,再根据平方关系解出sinA,代入(Ⅰ)中等式sinAsinB=sinAcosB+cosAsinB,解出tanB的值.试题解析:(Ⅰ)根据正弦定理,可设===k(k>0).则a=ksinA,b=ksinB,c=ksinC.代入+=中,有+=,变形可得sinAsinB=sinAcosB+cosAsinB=sin(A+B).在△ABC中,由A+B+C=π,有sin(A+B)=sin(π–C)=sinC,所以sinAsinB=sinC.考点:正弦定理、余弦定理、商数关系、平方关系.【名师点睛】本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为这个结论,否则难以得出结论.8.【2016高考天津文数】(本小题满分13分)在中,内角所对应的边分别为a,b,c,已知.(Ⅰ)求B;(Ⅱ)若,求sinC的值.【答案】(Ⅰ)(Ⅱ)【解析】试题分析...