专题能力训练5基本初等函数、函数的图象和性质一、能力突破训练1.下列函数在其定义域上既是奇函数又是减函数的是()A.f(x)=-x|x|B.f(x)=xsinxC.f(x)=D.f(x)=2.已知a=21.2,b=,c=2log52,则a,b,c的大小关系为()A.cb>1,若logab+logba=,ab=ba,则a=,b=.8.若函数f(x)=xln(x+)为偶函数,则a=.9.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)内单调递增.若实数a满足f(log2a)+f(loa)≤2f(1),则a的取值范围是.10.设奇函数y=f(x)(x∈R),满足对任意t∈R都有f(t)=f(1-t),且当x∈时,f(x)=-x2,则f(3)+f的值等于.11.设函数f(x)=的最大值为M,最小值为m,则M+m=.12.若不等式3x2-logax<0在x∈内恒成立,求实数a的取值范围.二、思维提升训练13.函数y=的图象大致为()14.已知f(x)是定义在R上的偶函数,当x>0时,f(x)=若f(-5)f(-),则a的取值范围是.17.设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=其中a,b∈R.若f=f,则a+3b的值为.18.若函数exf(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为.①f(x)=2-x②f(x)=3-x③f(x)=x3④f(x)=x2+219.已知函数f(x)=ex-e-x(x∈R,且e为自然对数的底数).(1)判断函数f(x)的奇偶性与单调性.(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.专题能力训练5基本初等函数、函数的图象和性质一、能力突破训练1.A解析函数f(x)=在其定义域上既是奇函数又是减函数,故选A.2.A解析 b==20.8<21.2=a,且b>1,又c=2log52=log54<1,∴c0,排除A,B;当x=时,y=-+2>2.排除C.故选D.4.D解析因为f(x)为奇函数,所以f(-1)=-f(1)=1,于是-1≤f(x-2)≤1等价于f(1)≤f(x-2)≤f(-1).又f(x)在区间(-∞,+∞)单调递减,所以-1≤x-2≤1,即1≤x≤3.所以x的取值范围是[1,3].5.A解析 f(a)=-3,∴当a≤1时,f(a)=2a-1-2=-3,即2a-1=-1,此等式显然不成立.当a>1时,f(a)=-log2(a+1)=-3,即a+1=23,解得a=7.∴f(6-a)=f(-1)=2-1-1-2=-2=-6.C解析 f(-x)=f(2+x)=-f(x),∴f(x+4)=f[(x+2)+2]=-f(x+2)=f(x).∴f(x)的周期为4. f(x)为R上的奇函数,∴f(0)=0. f(2)=f(1+1)=f(1-1)=f(0)=0,f(3)=f(-1)=-f(1)=-2,f(4)=f(0),∴f(1)+f(2)+f(3)+f(4)=0.∴f(1)+f(2)+…+f(50)=f(49)+f(50)=f(1)+f(2)=2.7.42解析设logba=t,由a>b>1,知t>1.由题意,得t+,解得t=2,则a=b2.由ab=ba,得b2b=,即得2b=b2,即b=2,∴a=4.8.1解析 f(x)是偶函数,∴f(-1)=f(1).又f(-1)=-ln(-1+)=ln,f(1)=ln(1+),因此ln(+1)-lna=ln(+1),于是lna=0,∴a=1.9解析由题意知a>0,又loa=log2a-1=-log2a. f(x)是R上的偶函数,∴f(log2a)=f(-log2a)=f(loa). f(log2a)+f(loa)≤2f(1),∴2f(log2a)≤2f(1),即f(log2a)≤f(1).又f(x)在[0,+∞)上单调递增,∴|log2a|≤1,-1≤log2a≤1,∴a10.-解析根据对任意t∈R都有f(t)=f(1-t)可得f(-t)=f(1+t),即f(t+1)=-f(t),进而得到f(t+2)=-f(t+1)=-[-f(t)]=f(t),得函数y=f(x)的一个周期为2,则f(3)=f(1)=f(0+1)=-f(0)=0,f=f=-,所以f(3)+f=0+=-11.2解析f(x)==1+,设g(x)=,则g(-x)=-g(x),故g(x)是奇函数.由奇函数图象的对称性知g(x)max+g(x)min=0,则M+m=[g(x)+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.12.解由题意知3x2