题型练1选择题、填空题综合练(一)一、能力突破训练1.(2018北京,理1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=()A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}2.若复数z满足2z+=3-2i,其中i为虚数单位,则z=()A.1+2iB.1-2iC.-1+2iD.-1-2i3.若a>b>1,00)个单位长度得到点P'.若P'位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为10.函数f(x)=xcosx2在区间[0,2]上的零点的个数为()A.2B.3C.4D.511.如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A,B的任意一点,若P为半径OC上的动点,则()·的最小值为()A.B.9C.-D.-912.函数f(x)=(1-cosx)sinx在[-π,π]上的图象大致为()13.已知圆(x-2)2+y2=1经过椭圆=1(a>b>0)的一个顶点和一个焦点,则此椭圆的离心率e=.14.的展开式中的常数项为.(用数字表示)15.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=.16.曲线y=x2与直线y=x所围成的封闭图形的面积为.二、思维提升训练1.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)2.(2018北京,理8)设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤时,(2,1)∉A3.若a>b>0,且ab=1,则下列不等式成立的是()A.a+0,b>0)的一条渐近线与直线x+2y+1=0垂直,则双曲线C的离心率为()A.B.C.D.7.函数y=xsinx在[-π,π]上的图象是()8.在△ABC中,a,b,c分别为∠A,∠B,∠C所对的边,若函数f(x)=x3+bx2+(a2+c2-ac)x+1有极值点,则∠B的取值范围是()A.B.C.D.9.将函数y=sin2x(x∈R)的图象分别向左平移m(m>0)个单位、向右平移n(n>0)个单位所得到的图象都与函数y=sin(x∈R)的图象重合,则|m-n|的最小值为()A.B.C.D.10.质地均匀的正四面体表面分别印有0,1,2,3四个数字,某同学随机地抛掷此正四面体2次,若正四面体与地面重合的表面数字分别记为m,n,且两次结果相互独立,互不影响.记m2+n2≤4为事件A,则事件A发生的概率为()A.B.C.D.11.已知O是锐角三角形ABC的外接圆圆心,∠A=60°,=2m·,则m的值为()A.B.C.1D.12.设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为()A.B.C.D.113.(2018天津,理9)i是虚数单位,复数=.14.在平面直角坐标系中,设直线l:kx-y+=0与圆O:x2+y2=4相交于A,B两点,,若点M在圆O上,则实数k=.15.如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.16.已知等差数列{an}前n项的和为Sn,且满足=3,则数列{an}的公差为.题型练1选择题、填空题综合练(一)一、能力突破...