数学是思维的科学(单墫南京师范大学210024,广州大学教育软件所510050)1.数学是思维的科学。这句话,大概不会有什么反对的意见。谁都知道,数学能够启迪、培养、发展人的思维。虽然也有其他学科或其他方式可以培养人的思维,但在深度、广度、系统性等方面,是无法与数学相比的。然而,在实际运作时,却有一些人忽视这一点,他们只看重数学是一门实用性的科学。提到式的恒等变形,他们会问:这有什么用?提到不等式的证明,他们更摇头表示怀疑:没有用的东西,学它干什么?在这些人看来,小学的四则运算日常生活少不得,当然是有用的,要学。目前初中的内容约有二分之一还有些用处(其中几何证明都是绝对无用的)。高中内容,大部分是为了应试,都应当取消,只有一小部分可以保留。这种观点,由来已久。早在60年代,即已出现轻理论、重实用,过分强调理论必须联系实际的思潮。在文化大革命中,更发展到顶峰。当时有的地方,中学数学课已经被取消掉,少得可怜的一点数学内容纳入一门叫做“工业基础知识”的课里面。仅将数学当作实用科学就是不懂得培养思维能力正是数学的一大功用,即使只谈实用性,也决不可忽略思维能力的培养。明朝的徐光启先生(1562--1633),见解就很高明。他在万历三十五年(公元1607年)与利玛窦合译了欧几里得的《几何原本》。在译本卷首的《几何原本杂议》中,徐先生指出:“人具上资而意理疏莽,即上资无用;人具中材而心思缜密,即中材有用;能通几何之学,缜密甚矣,故率天下之人而归于实用者,是或其所由之道也。”最近我见到一篇文章《数学与文学》,作者是一位在人文科学方面卓有成就的朱正先生(著有《鲁迅传略》(1956年)、《鲁迅回忆正谈》(1979年)、《小书生大时代》(1999年)、《辫子、小脚及其他》(1999年)等书)。朱先生对数学的作用认识非常深刻,他说:“我在学术研究方面所做的工作,凭仗的也就是当年数学‘体操’所训练出来的思维能力。我的一本41957年的夏季:从百家争鸣到两家争鸣》,程干帆先生看了,许我为汉学家,说那本书深得段戴钱王之妙,却不知道其实是得益于数学的。”(朱正著《字纸篓》,12卜121页,广东人民出版社,2000年出版)。即使一个人“从事的几乎是同数学没有什么关系的职业,原来学的代数几何三角中的定理定律几乎全忘记了”(朱正先生语,同上120页),然而数学对思维的训练还是有用的,这才是数学的最广泛的“实用性”,这才是我们要学数学的主要原因。2.我国古代曾有过四大发明,在数学方面也有很多成就,并出现了《九章算术》、《周髀算经》等重要著作,但后来我国的自然科学却停滞了,远远落后于西方。这当然有很多的原因(特别是政府的腐败),但其中有一点是很重要的,即过于强调实用,而缺乏理性的思维。希腊人比古代的中国、埃及、巴比伦前进了一大步,他们“具有重理知的特性,概括并简化各种科学原则,希望由此求出这些科学的道理”,“柏拉图坚持研究几何学,并不是为了几何学的实际用途,而是想发展思想的抽象力,并训练心智使之能正确而活泼地思考。柏拉图把思想的抽象力和正确的思考能力应用在伦理与政治上,结果奠定了西方社会哲学的基础;亚里士多德把它们应用在研究具体事物的真实性上,结果奠定了物质科学的基础。”“自然科学之能发展到目前的阶段,首先归功于希腊人对大自然的观念以及对有系统的智力训练的爱好,中问经过文艺复兴、宗教革命、法国革命,后来又受到工业革命的大刺激。工业革命使工具的技术逐渐改进。西欧在自然科学的后期发展中,从未忽视科学的实际用途。不断的发现和发明更进一步刺激了科学研究。理论科学和应用科学齐头并进,而相辅相成。”应当承认我国在理论思维方面不及希腊与西欧。数学方面,这样的例子很多。我们古代很早就知道了勾3股4弦5,但没有证明一般的勾股定理(即毕达哥拉斯定理),也没有找出勾股数(满足的整数组(a,b,c)的一般规律。这些都是由希腊人完成的。我国古代很早就知道是奇质数P的倍数,但建立起费马小定理的却是法国人费马(Fermat,1601—1665)。曾在北京大学任过十多年校长的蒋梦麟先生(1886--1964),在他的名著《西潮》中早就说到这一点,他说:“在中国,发明常...