新浙教版数学九年级(上)1.4二次函数的应用(1)1、二次函数y=ax2+bx+c(a≠0)何时有最大值或最小值?2、如何求二次函数的最值?配方法公式法求下列二次函数的最大值或最小值:y=-x2+4xy=-(x2-4x)==-(x2-4x+22-22)=-(x-2)2+4所以:当x=2时,y达到最大值为4.解:因为-1<0,则图像开口向下,y有最大值当x=时,y达到最大值为b422a224acb44a(1).设矩形的一边AB=xm,那么AD边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.MN40m30mABCD┐(1).设矩形的一边AB=xm,那么AD边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.ABCD┐MN3:1.,30.4ADbmbx解设易得40m30mxxxxxby30433043.22.30020432x.30044,202:2abacyabx最大值时当或用公式xmbm(1).如果设矩形的一边AD=xm,那么AB边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.ABCD┐MN40m30mbmxm4:1.,40.3ABbmbx解设易得xxxxxby40344034.22.30015342x.30044,152:2abacyabx最大值时当或用公式(1).设矩形的一边BC=xm,那么AB边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其顶点A和点D分别在两直角边上,BC在斜边上.ABCD┐MNP40m30mxmbm:1.50,24.MNmPHm解由勾股定理得xxxxxby242512242512.22.3002525122x.30044,252:2abacyabx最大值时当或用公式12,24.25ABbmbx设易得HG┛┛1.理解问题;“二次函数应用”的思路本节“最大面积”解决问题的过程,你能总结一下解决此类问题的基本思路吗?与同伴交流.2.分析问题中的变量和常量,以及它们之间的关系;3.用数学的方式表示出它们之间的关系;4.做数学求解;5.检验结果的合理性,拓展等.1、用长为8米的铝合金制成如图窗框,一边靠2cm的墙问窗框的宽和高各为多少米时,窗户的透光面积最大?最大面积是多少?解:设窗框的一边长为x米,x又令该窗框的透光面积为y米,那么:y=x即:y=-0.5x2+4x则另一边的长为米,合作探究82x82x82x2、用长为8米的铝合金制成如图窗框,问窗框的宽和高各多少米时,窗户的透光面积最大?最大面积是多少?合作探究解:设矩形窗框的面积为y,由题意得,xxy238xx423238)34(232x)380(x,最大面积为窗框的透光面积最大。时,,窗框的长为当窗框的宽2384734mmmx如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。ABCD解:(1)AB 为x米、篱笆长为24米∴花圃宽为(24-4x)米(3) 墙的可用长度为8米(2)当x=时,S最大值==36(平方米)32ababac442∴S=x(24-4x)=-4x2+24x(0