北京市海淀区高三数学第二轮专题复习—解析几何的题型与方法一.考纲要求●直线和圆的方程1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。3.了解二元一次不等式表示平面区域。4.了解线性规划的意义,并会简单的应用。5.了解解析几何的基本思想,了解坐标法。6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。●圆锥曲线方程1.掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程。2.掌握双曲线的定义、标准方程和双曲线的简单几何性质。3.掌握抛物线的定义、标准方程和抛物线的简单几何性质。4.了解圆锥曲线的初步应用。二.05年试题回放1.(江西卷文)如图,M是抛物线上y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明:直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹。2.(江西卷理)如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求△APB的重心G的轨迹方程.(2)证明∠PFA=∠PFB.3.(重庆卷文)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(1)求双曲线C的方程;(2)若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围。4.(重庆卷理)已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。(1)求双曲线C2的方程;OABEFMOABPFOF2F1A2A1PM(2)若直线l:与椭圆C1及双曲线C2恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围。5.(浙江)17.如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若直线l1:x=m(|m|>1),P为l1上的动点,使∠F1PF2最大的点P记为Q,求点Q的坐标(用m表示).6.(天津卷)抛物线C的方程为,过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)B(x2,y2)两点(P,A,B三点互不相同),且满足.(Ⅰ)求抛物线C的焦点坐标和准线方程;(Ⅱ)设直线AB上一点M,满足,证明线段PM的中点在y轴上;(Ⅲ)当=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.7.(上海文).已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标;(3)以M为圆心,MB为半径作圆M.当K(m,0)是x轴上一动点时,讨论直线AK与圆M的位置关系.8.(上海理)点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,。(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值。9.(山东卷)已知动圆过定点,且与直线相切,其中.(I)求动圆圆心的轨迹的方程;yAxoB,02pFMN2px(II)设A、B是轨迹上异于原点的两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.10.(全国卷Ⅰ文)已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线。(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且,证明为定值。11.(全国卷Ⅰ理)已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线.(1)求椭圆的离心率;(2)设M为椭圆上任意一点,且,证明为定值.12.(全国卷II)、、、四点都在椭圆上,为椭圆在轴正半轴上的焦点.已知与共线,与共线,且.求四边形的面积的最小值和最大值.13.(全国卷III文)设两点在抛物线上,是AB的垂直平分线,(Ⅰ)当且仅当取何值时,直线经过抛物线的焦点F?证明你的结论;(Ⅱ)当时,求直...